Journals →  Materialy Elektronnoi Tekhniki →  2010 →  #4 →  Back

Atomic structures and methods of structural investigations
ArticleName Study of the structural evolution of Si damaged layer after implantation with 64Zn+ ions and subsequent annealing
ArticleAuthor K. D. Shcherbachev, V. V. Privezentsev, V. V. Saraikin, D. A. Podgornyy
ArticleAuthorData K. D. Shcherbachev, National Research University «MISiS»; V. V. Privezentsev, Institute of Physics & Technology, Russian Academy of Sciences; V. V. Saraikin, Research Institute of Physical Problems; D. A. Podgornyy, National Research University «MISiS».
Abstract
The defect structure of the layer damaged by implantation with 64Zn+ ions and its evolution during subsequent annealing was studied using high-resolution X-ray diffraction, SIMS and AES methods. The samples were pieces of n-type Si(001) wafer cut from a Czochralski grown ingot. The samples were implanted with 64Zn+ ions at an energy of 100keV and an ion dose of 2 ⋅ 1014 cm-2 with a subsequent annealing at 400 °C during 60 min and 700 °C during 10min. The strain and Debye—Waller depth profiles reconstructed from the diffraction patterns were analyzed. Annealing leads to significant changes of the profile shape. This change can be caused by the annihilation of the Frenkel pair components, redistribution of both radiation-induced point defects and the implanted impurity and quasi-chemical reactions between point defects and the implanted impurity. Analysis of Si(2 2 4) reciprocal space maps confirms that the damaged layer remains fully coherent to the Si matrix in the as-implanted state and after the heat treatments. Increase of X-ray diffuse scattering intensity after annealing is caused by clustering of radiation-induced point defects and implanted Zn atoms.
keywords Implantation, X-ray diffraction, silicon, radiation point defects.
References
1. Shcherbachev, K. D. Defect structure of zinc doped silicon studied by X—ray diffuse scattering method / K. D. Shcherbachev, V. V. Privezentsev // Phys.B: Condens. Matter. — 2009. — V. 404. — P. 4630.
2. Muntele, I. Zinc oxide nanocluster formation by low energy ion implantation / I. Muntele, P. Thevenard, C. Muntele, B. Chhay, D. Ila // Mater. Res. Symp. Proc. — 2005. — V. 829. — P. B.2.21.
3. Simov, S. High—dose phenomena in zinc—implanted silicon crystals / S Simov, M. Kalitzova, D. Karpuzov, R. Yankov, Ch. Angelov, J. Faure, P. Bonhomme, G. Balossier // J. Appl. Phys. — 1996. — V. 79. — P. 3470.
4. Kalitzova, M. Amorphization and crystallization in high—dose Zn+—implanted silicon / M. Kalitzova, S. Simov, R. A. Yankov, Ch. Angelov, G. Vitali, M. Rossi, C. Pizzuto, G. Zollo, J. Faure, L. Killan, P. Bonhomme, M. Voelskov // J. Appl. Phys. — 1997. — V. 81. — P. 1143.
5. Zollo, G. Precipitation of superstructured nano—crystals in high—dose implanted Si: an XHRTEM study / G. Zollo, M. Kalitzova, D. Manno, G. Vitali // J. Phys. D: Appl. Phys. — 2004. — V. 37. — P. 2730.
6. Ziegler, J. F. The stopping and range of ions in solids / J. F. Ziegler, J. P. Biersack, U. Littmark — N.—Y. : Pergamon Press, 1985. — P. 321.
7. SHCHerbachev, K. D. Primenenie trekhkristal'noy rentgenovskoy difraktometrii dlya issledovaniya ionoimplantirovannykh sloev / K. D. SHCHerbachev, A. V. Kuripyatnik, V. T. Bublik // Zavodskaya laboratoriya. — 2003. — № 6. — S. 23—31.
8. Wie, C. R. Dynamical X—ray diffraction fromnonuniform crystalline films: Application to X—ray rocking curve analysis / C. R. Wie, T. A. Tombrello, T. Vreeland // J. Appl. Phys. — 1986. − V. 59. — P. 3743—3746.
9. Krivoglaz, M. A. Difraktsiya rentgenovskikh luchey i neytronov v neideal'nykh kristallakh. / M. A. Krivoglaz — Kiev: Naukova dumka, 1983. — 408 s.
10. Francois—Saint—Cyr, H. Secondary ion mass spectrometry characterization of the diffusion properties of 17 elements implanted into silicon / H. Francois—Saint—Cyr, E. Anoshkina, F. Stevie, L. Chow, K. Richardson, D. Zhou // J. Vac. Sci. Technol. — 2001. — V. B 19. — N 5. — P. 1769—1774.
Language of full-text russian
Full content Buy
Back