Библиографический список |
1. Cameron P., Drinkwater D., Pease J. The ABC of mine to mill and metal price cycles. Proceedings of the 13th AusIMM Mill Operators’ Conference 2016. Melbourne : The Australasian Institute of Mining and Metallurgy, 2016. pp. 349–358. 2. Tokarenko A., Timofeyev I., Kilin S., Valery W., Valle R. et al. Increasing production at Polyus Gold Blagodatnoye with holistic optimization from mine-to-plant. Procemin 2017: 13th International Mineral Processing Conference, 4th International Seminar on Geometallurgy. Chile, 2017. 3. Egorov V .V., Volokitin A. N., Ugolnikov N. V., Sokolovsky A. V. Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness. Gornya Promyshlennost. 2021. No. 3. pp. 110–115. 4. Zhang Z.-X., Sanchidrián J. A., Ou chterlony F., Luukkanen S. Reduction of fragment size f rom mining to mineral processing: A review. Rock Mechanics and Rock Engineering. 2023. Vol. 56, Iss. 1. pp. 747–778. 5. Valery W., Duffy K., Holtham P., Reple A., Walker P. et al. Techno-economic evaluation of bulk ore sorting for copper ore at the PanAust Phu Kham operation. IMPC 2016: XXVIII International Mineral Processing Congress Proceedings. Québec, 2016. 6. Workman L., Eloranta J. The effects of blasting on crushing and grinding efficiency and energy consumption. Proceedings of the 29th Annual Conference on Explosives and Blasting Technique. Nashville, 2003. 7. Vinogradov Yu. I., Khokhlov S. V. The drilling-and-blasting parameters determination method for specified grain-size composition of the blasted rock mass. MIAB. 2015. Special issue 19. pp. 20–29. 8. Marinina O., Kirsanova N., Nevskaya M. Circula r economy models in industry: Developing a conceptual framework. Energies. 2022. Vol. 15, Iss. 24. ID 9376. 9. Vinogradov Yu. I., Khokhlov S. V., Zigangirov R. R., Miftakhov A. A., Suvorov Yu. I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure. Journal of Mining Institute. 2024. Vol. 266. pp. 231–245. 10. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of ste eply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15, No. 11. pp. 1306–1311. 11. Loginov E., Ligotsky D., Argimbaev K. Averaging the operating stripping ratio for sinking minin g systems based on mathematical simulation. Journal of Physics: Conference Series. 2020. Vol. 1614. ID 012050. 12. Khokhlov S. V., Vinogradov Yu. I., Makkoev V. A., Abiyev Z. A. Effect of explosive detonation v elocity on the degree of rock pre-fracturing during blasting. Mining Science and Technology. 2024. Vol. 9, No. 2. pp. 85–96. 13. Kovalevsky V. N., Mysin A. V., Sushkova V. I. Theoretical aspects of block stone blasting method. Mining Science and Technology. 2024. Vol. 9, No. 2. pp. 97–104. 14. Afanasev P. I. Analysis o f shock wave parameters at the explosive cavity wall during refracti on of detonation waves through the air and water. Sustainable Development of Mountain Territories. 2023. Vol. 15, No. 3(57). pp. 505–515. 15. Vokhmin S. A., Kurchin G. S., Shevnina E. V., Kirsanov A. K., Kostylev S. S. Granulometric composition predicting models after explosion in open-pit mining. Izvestiya vuzov. Gornyi zhurnal. 2020. No. 1. pp. 14–24. 16. Cunningham C. V. B. The Kuz–Ram model for prediction of fragmentation from blasting. Proceedings of the First International Symposium on Rock Fragmentation by Blasting. Lulea, 1983. Vol. 2. pp. 439–454. 17. Cunningham C. V. B. The Kuz–Ram fragmentation model—20 years on. Proceedings of the 3rd European Federation of Explosives Engineers World Conference on Explosives and Blasting. Brighton, 2005. Vol. 4. pp. 201–210. 18. Ouchterlony F. The Swebrec© function : Linking fragmentation by blasting and crushing. Mining Technology: Transactions of the Institutions of Mining and Metallurgy. 2005. Vol. 114, Iss. 1. pp. 29–44. 19. Kansake B. A., Temeng V. A., Afum B. O. Comparative analysis of rock fragmentation models—A case study. Proceedings of the 4th UMaT Biennial International Mining and Mineral Conference. Tarkwa, 2016. 20. Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. Journal of Mining Institute. 2022. Vol. 257. pp. 822–832. 21. Isheisky V. A., Ryadinskii D. E., Magom edov G. S. Increasing the quality of fragmentation of blasting rock mass based on accounting for structural features of massif in the blast design. MIAB. 2023. No. 9-1. pp. 79–95. 22. Nourian A., Moomivand H. Development of a new model to predict uni formity index of fragment size distribution based on the blasthole parameters and blastability index. Journal of Mining Sciences. 2020. No. 1. pp. 54–65. 23. Esen S. Evaluating the fragmentation data from copper and gold mines. 43rd Annual Conference on Explosives & Blasting Technique. Florida, 2017. 24. Kazmina A. Yu. Substantiation of drill&blast designs in breaking strong rocks by finitelength borehole charges—A case-study of Gavrilovo Mine Management : Theses of Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2013. 20 p. 25. Borovikov V. A., Vanyagin I. F. Modeling Blasting Effect in Rock Fracture. Moscow : Nedra, 1990. 231 p. 26. Afanasev P. I., Menzhulin M. G. Change in the average lump size in the crushing zone based on the calculation of energy dissipation. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2022. No. 4. pp. 408–419. 27. Kuznetsov V. M. Mathematical Models in Blasting Engineering. Novosibirsk : Nauka, 1977. 262 p. 28. Lilly P. A. The use of the Blastability Index in the design of blasts for open pit mines. Proceedings of Western Australian Conference on Mining Geomechanics. Kalgoorlie, 1992. pp. 421–426. 29. Alipour A., Mokharian M., Chehreghani S. An ap plication of fuzzy sets to the Blastability Index (BI) used in rock engineering. Periodica Polytechnica Civil Engineering. 2018. Vol. 62, No. 3. pp. 580–589. 30. Kosolapov A. I. Modern methods and tools for determining drillability and blastability of rocks. IOP Conference Series: Earth and Environmental Science. 2020. Vol. 459, No. 2. ID 022097. 31. Elahi E. New model of burden thickness esti mation for blasting of open pit mines. International Journal of Engineering, Transactions B: Applications. 2021. Vol. 34, No. 5. pp. 1381–1389. 32. Isheyskiy V., Martinyskin E., Smirnov S., Va silyev A., Knyazev K. et. al. Specifics of MWD data collection and verification during formation of training datasets. Minerals. 2021. Vol. 11, Iss. 8. ID 798. 33. Teale R. The concept of specific energy in rock drilling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1965. Vol. 2, Iss. 1. pp. 57–73. 34. Marinin M. A., Afanasyev P. I., Sushkova V. I., Ustimenko K. D., Akhmetov A. R. The experience of using the Kuz–Ram model in describing of grain size distribution of blasted rock mass. MIAB. 2023. No. 9-1. pp. 96–109. 35. Marinin M. A., Rakhmanov R. A., Alenichev I. A., Afanasyev P. I., Sushkova V. I. Effect of grain size distribution of blasted rock on WK-35 shovel performance. MIAB. 2023. No. 6. pp. 111–125. 36. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021. Vol. 249. pp. 334–341. 37. Dolzhikov V. V., Ryadinsky V. V., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. 2022. No. 6-2. pp. 18–32. |