Journals →  Gornyi Zhurnal →  2025 →  #3 →  Back

INNOVATIVE TECHNOLOGIES
ArticleName Detection of pitwall deformation features using physical modeling
DOI 10.17580/gzh.2025.03.10
ArticleAuthor Pavlovich A. A., Melnikov N. Ya., Sviridenko A. S., Shepel A. M.
ArticleAuthorData

Pitwall Stability Laboratory, Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

A. A. Pavlovich, Head of Laboratory, Candidate of Engineering Sciences, pavlovich_aa@pers.spmi.ru
N. Ya. Melnikov, Senior Researcher, Candidate of Engineering Sciences
A. S. Sviridenko, Leading Engineer
A. M. Shepel, Leading Engineer

Abstract

Currently, geomechanical justification of maximum allowable pitwall limit is based on the load-bearing capacity estimation. The estimation result is the stability factor and its comparison with the standard value. According to the normative approach, stability factor is the only criterion of slope stability. Also, it is assumed that at the stability factors higher than 1.3, pitwall rock mass experiences mostly elastic deformation. Actual mining experience shows that deformations may be of different scales, especially in large open pits. Sometimes displacements confine mining operations, for instance, in case of reversal dip of strata. Accordingly, the normative approach to the displacement estimations is highly generalized and lacks attention to the variety of geological conditions and to the change of the stress–strain behavior of pitwall rock mass during mining. Rock mass is a jointed and blocky medium characterized by nonlinear deformation. This is particularly valid for deep open pits. For this reason, the issues concerned with prediction of displacements of pitwall rock mass become increasingly more topical. Thus, the slope stability estimation should include both stability factors and deformations. With this object in mind, the influence of the stress state of slopes on the deformation behavior of pitwall rock mass was studied using physical simulation and equivalent materials. The modeling displayed peculiarities of slope deformation in the course of the decrease of the stability factor down to complete failure.

keywords Open pit mine, rock mass, deformations, stability factor, physical modeling, failure, slopes
References

1. Babanouri N., Dehghani H., Khodaveisi M. A path search algorithm for optimizing ultimate limit of open pit mines with geomechanical constraints. Journal of Mining Science. 2022. Vol. 58, No. 1. pp . 44–51.
2. Nedosekin A. O., Reyshakhrit E. I., Kozlovskiy A. N. Strategic approach to assessing economic sustainability objects of mineral resources sector of Russia. Journal of Mining Institute. 2019. Vol. 237. pp. 354–360.
3. Velikanov V. S., Dremin A. V., Lukashuk O. A., Chernuhin S. A., Lukashuk M. D. Digital transformation mining enterprises and terotechnology ground vehicles. Gornoe oborudovanie i elektromekhanika. 2024. No. 1(171). pp. 50–56.
4. Rylnikova M. V., Makeev M. A., Kadochnikov M. V., Klebanov D. A. Leverage of big data to optimize the operation of loading equipment and vehicles in surface mining. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2022. No. 4. pp. 343–354.
5. Fomin S. I., Ovsyannikov M. P. Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits. Journal of Mining Institute. 2022. DOI: 10.31897/PMI.2022.73
6. Mandisodza K. T. Management of geotechnical hazards through embracing technology and innovative thinking. Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth : Australian Centre for Geomechanics, 2020. pp. 191–206.
7. Read J., Stacey P. Guidelines for Open Pit Slope Design. Collingwood : CSIRO Publishing, 2009. 487 p.
8. Yakovlev V. L., Yakovlev A. V., Shimkiv E. S. Open pit mine slope stability: Methodological framework. Journal of Mining Science. 2023. Vol. 59, No. 6. pp. 877–884.
9. McQuillan A., Bar N. The necessity of 3D analysis for open-pit rock slope stability studies: Theory and practice. Journal of the Southern African Institute of Mining & Metallurgy. 2023. Vol. 123, No. 2. pp. 63–69.
10. Utili S., Agosti A., Morales N., Valderrama C., Pell R. et al. Optimal pitwall shapes to increase financial return and decrease carbon footprint of open pit mines. Gornyi Zhurnal. 2022. No. 3. pp. 22–37.
11. Ilyasov B. T., Soluyanov N. O., Sadinov Sh. M., Sodikov I. Yu. The Besapantau pitwall optimization using 3D-modeling in Digger Slope environment. Gornyi vestnik Uzbekistana. 2023. No. 1(92). pp. 4–12.
12. Zakharov V. N., Rylnikova M. V., Nikiforova I. L. Development of scientific and methodological foundations for the design of mining systems in open pit development. MIAB. 2017. Special issue 37. pp. 13–26.
13. Kalyuzhny A. S., Rozanov I. Yu. Causes of pit wall failure in Zhelezny Mine by radar monitoring and stability calculations. Journal of Mining Science. 2024. Vol. 60, No. 1. pp. 36–44.
14. Belgueliel F., Fredj M., Saadoun A., Boukarm R. Finite element analysis of slope failure in Ouenza open-pit iron mine, NE Algeria: Causes and lessons for stability control. Journal of Mining Institute. 2024. Vol. 268. pp. 576–587.
15. Andreeva O. N., Kol’tsov P. V., Pykhteeva N. F. Analysis of stability of slopes of the Zapadno-Ozerny pit to ensure mining safety. Problemy nedropolzovaniya. 2023. No. 1(36). pp. 32–40.
16. Lushnikov V. N., Selivanov D. A., Berezhnoy V. P. Reliable prediction of geotechnical risks in open pit mining. Gornyi Zhurnal. 2023. No. 1. pp. 4–13.
17. Spirin V. I., Livinsky I. S., Hormazabal E. Risk-based optimization of open pit slopes. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2019. No. 3. pp. 317–331.
18. Afanasev P. I., Medina S. Ya., Savon V. Yu. et al. The analysis of slope stability of the mining road of the Camarioca Este deposit of the Comandante Ernesto Che Guevara company. Bezopasnost truda v promyshlennosti. 2024. No. 4. pp. 78–84.
19. Available at: https://docs.cntd.ru/document/573140211 (accessed: 19.12.2024). 20. Polovov B. D., Valiev N. G., Prishchepa D. V., Lebzin M. S. Assessment and optimization of stock rates in geomechanical modeling mining technical facilities (GTS). Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2021. No. 2. pp. 323–344.
21. Kachaev A. V., Malinin Yu. A., Grib G. V., Redlikh E. F., Balykov O. A. Stability estimation of project pitwall rock mass in permafrost zone. Tendentsii razvitiya nauki i obrazovaniya. 2021. No. 80-7. pp. 87–93.
22. Mochalov A. M. Assessment of stability of pit edges by the observed deformations. Improvement of Calculation Methods for Movement and Deformations of Rocks, Facilities and Cut Edges During the Coal Layer Mining in Complex Mining-Geological Conditions : Collection of Scientific Papers. Leningrad : VNIMI, 1985. pp. 42–52.
23. Kutepov Yu. Yu., Borger E. B. Numerical modeling of the rock mass subsidence applied to geological conditions of the mine named after Ruban in Kuzbass. MIAB. 2017. No. 5. pp. 66–75.
24. Mustafin M. G., Valkova E. O. Surveying and geomechanical justification for the methods of quarry sides deformations observation. Ugol. 2024. No. 7. pp. 55–61.
25. Bagautdinov I. I., Belyakov N. A., Sevryukov V. V., Rasskazov M. I. Hardening soil model in prediction of plastic deformation zone in soft rock mass of Yakovlevo iron ore deposit. Gornyi Zhurnal. 2022. No. 12. pp. 16–21.
26. LeRiche A., Tims S., Saunders E., Mohr P. Geotechnical domaining for the Aktogay Porphyry Deposit supported by Machine Learning Techniques. International Slope Stability 2022 Symposium. Tucson, 2022.
27. Novozhenin S. Yu., Voloshina E. A., Markus A. V. Predictive assessment of displacements and deformations of a curvilinear quarry. Marksheyderiya i nedropolzovanie. 2024. No. 5(133). pp. 120–129.
28. Kutepov Yu. I., Kutepova N. A., Ponomarenko M. R., Kutepov Yu. Yu. Geomech anical monitoring of slope stability in pitwall and dumps in coal mining. Gornyi Zhurnal. 2023. No. 5. pp. 69–74.
29. Bakhaeva S. P., Tur K. A., Ilyushkin V. D. Geomechanical substantiation of the dump stability during joint storage of overburden sandy–clayey rocks and beneficiation waste. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. No. 4(140). pp. 49–59.

30. Bar N., Mojica B., Cobián J. C., Bautista M., Hammah R. et al. Cumba slope failure: A technical review. International Slope Stability 2022 Symposium. Tucson, 2022.
31. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
32. Tsirel S. V., Pavlovich A. A., Melnikov N. Ya. Substantiation of pitwall parameters in rock mass with steeply dipping bedding. Gornyi Zhurnal. 2023. No. 5. pp. 49–54.
33. Kholodilov A. N., Istomin R. S., Kirilenko V. I. Improvement technique for manufacturing equivalent materials for modeling nonlinear geomechanical processes in underground mineral mining. MIAB. 2024. No. 10. pp. 108–122.
34. Glushikhin F. P., Kuznetsov G. N., Shklyarskiy M. F., Pavlov V. N., Zolotnikov M. S. Modeling in Geomechanics. Moscow : Nedra, 1991. 240 p.
35. Kuznetsov G. N., Budko M. N., Filipova A. A., Shklyarskiy M. F. Analysis of Rock Pressure-Induced Events Using Models. Moscow : Ugletekhizdat, 1959. 283 p.

Language of full-text russian
Full content Buy
Back