Journals →  Tsvetnye Metally →  2025 →  #3 →  Back

AUTOMATION
ArticleName Technical vision sy stem for quartz raw material quality assessment
DOI 10.17580/tsm.2025.03.12
ArticleAuthor Simakov А. S., Masko О. N., Nikolaev М. Yu.
ArticleAuthorData

Saint Petersburg Mining University, Saint Petersburg, Russia

А. S. Simakov, Associate Professor of the Department of Automation of Technological Processes and Production, Candidate of Technical Sciences, e-mail: Simakov_AS@pers.spmi.ru
О. N. Masko, Assistant of the Department of Automation of Technological Processes and Production, Candidate of Technical Sciences, e-mail: Masko_ON@pers.spmi.ru
М. Yu. Nikolaev, Postgraduate Student of the Department of Automation of Technological Processes and Production, e-mail: s235018@stud.spmi.ru

Abstract

One of the key problems of metallurgical production is the quality fluctuations of feedstock such as ores, concentrates and metallurgical charge. The chemical and mineralogical composition of the ore and their stability in the ore flow remain the main ones when assessing the significance of indicators characterizing the quality of the mineral in general. Analysis of production data of industrial silicon smelting in ore thermal furnaces has shown that the efficiency of the technological process, the volume of dust emissions and the purity of the final product depend on the quality of quartz raw materials. Ore quality is determined by such functional characteristics as percentage of harmful impurities, strength of ore mass, mineral and structural composition, moisture, etc. Stability of ore mass composition has the most significant influence on the results of metallurgical production. To solve the problem of accounting for fluctuations in the chemical composition of quartzite, the use of technical vision system is relevant. The paper describes an automatic system for analyzing the quality of quartz raw material for the production of metallurgical silicon based on the evaluation of visual characteristics of quartzite. The developed algorithm is based on colour filtering of images of mineral cuts. The result of the work is the data on the mass amount of iron impurity inclusions, and the average reliability of the estimation correlates with the data of X-ray spectral analysis based on the test results on average by 90%. Positive effects of implementation of the proposed vision system are the efficiency of quality assessment during unloading and preparation of raw materials, which allows taking measures to adjust the proportional composition of the charge of the ore thermal furnace.

keywords Metallurgical silicon production, quartzite quality control, technical vision system, color filtration, ore thermal furnace
References

1. Nemchinova N.V., Hoang V. V., Tyutrin A. A. Formation of impurity inclusions in silicon when smelting in ore-thermal furnaces. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 969. 012038. DOI: 10.1088/1757-899X/969/1/012038
2. Nemchinova N. V., Tyutrin A. A., Sokolnikova Yu. V., Fereferova T. T. Analytical investigations of silicon production raw materials and products. Journal of Siberian Federal University. Chemistry. 2017. Vol. 10, No 1. pp. 37–48.
3. Folstad M. B., Ringdalen E., Tveit H., Tangstad M. Effect of different SiO2 polymorphs on the reaction between SiO2 and SiC in Si production. Metallurgical and Materials Transactions B. 2021. Vol. 52, Iss. 6. DOI: 10.1007/s11663-020-02053-x

4. Legemza J., Findorák F., Buko B., Brianсin J. New approach in research of quartzes and quartzites for ferroalloys and silicon production. Metals. 2021. Vol. 11, Iss. 4. DOI: 10.3390/met11040670
5. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022. Vol. 256. pp. 517–526. DOI: 10.31897/PMI.2022.58
6. Shah S. A., Shao Y., Zhang Y. Texture and trace element geochemistry of quartz: A Review. Minerals. 2022. Vol. 12. DOI: 10.3390/min12081042
7. Okada N. et al. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals. 2020. Vol. 10, Iss. 9. DOI: 10.3390/min10090809
8. Fedorova E., Pupysheva E., Morgunov V. Modeling of particle size distribution in the presence of flocculant. Symmetry. 2024. Vol. 16. DOI: 10.3390/sym16010114
9. Fedorova E. R., Morgunov V. V., Pupysheva E. A. Effect of variation of internal diameter along the length of a rotary kiln on material movement. Non-ferrous Metals. 2024. No. 1. pp. 28–34.
10. Chmykhalova S. V. Analysis of the quality of mineral raw materials as a system shaping the quality of the finished product. Mining informational and analytical bulletin. 2019. No. S10. pp. 147–152. DOI: 10.25018/0236-1493-2019-5-10-147-152
11. Zhukovskiy Yu. L., Korolev N. A., Malkova Ya. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Journal of Mining Institute. 2022. Vol. 256. pp. 686–700. DOI: 10.31897/PMI.2022.91
12. Kozin V. Z., Komlev A. S. Mixed-type high-rate sampling in ore processing. Mining informational and analytical bulletin. 2022. No. 5. pp. 142–153. DOI: 10.25018/0236_1493_2022_5_0_142
13. Potrafke A., Breiter K., Ludwig T., Neuser R. D., Stalder R. Variations of OH defects and chemical impurities in natural quartz within igneous bodies. Phys. Chem. Minerals. 2020. Vol. 47, Iss. 5. DOI: 10.1007/s00269-020-01091-w
14. Elkin K. S., Rozhihina I. D., Nokhrina O. I., Sivtsov A. V. et al. On the influence of genetic features of quartzites on the indicators of reducing melting of silicon and high-percentage ferrosilicon. Metallurgy: technology, innovation, quality. Proceedings of the XXI International Scientific and Practical Conference. Part. 2. 2019. pp. 4–12.
15. Yolkin K. S., Sivtsov A. V., Yolkin D. K., Karlina I. Silicon metallurgy and ecology problems. KnE Materials Science. 2020. pp. 239–242. DOI: 10.18502/kms.v6i1.8073
16. Pierre-Henri K., Jan R. Sequential decision-making in mining and processing based on geometallurgical inputs. Minerals Engineering. 2020. Vol. 149. 106262. DOI: 10.1016/j.mineng.2020.106262
17. Bondarenko A. V. et al. Features of building software for an automatic analytical control system for flotation processes of ore dressing. Russian Mining Industry. 2021. No. S5-2. pp. 78–83.
18. Nemchinova N. V., Yakovleva A. A., Leonova M. S. Distribution of impurities during ore-thermal smelting of silicon. Proceedings of Irkutsk State Technical University. 2013. No. 12. pp. 230–236.
19. Chernyavskiy A. V., Stepenshchikov D. G. Image segmentation method for calculating the percentage of minerals using the author’s program. Trudy Fersmanovskoy nauchnoy sessii GI KNC RAN. 2021. No. 18. pp. 414–418. DOI: 10.31241/FNS.2021.18.078
20. Oksengoyt E. A., Kunitskiy N. A., Petrov P. A., Shestakov A. K. Modern equipment by Soyuztsvetmetavtomatika for detecting aerosols and spills of harmful pollutants. Tsvetnye Metally. 2023. No. 4. pp. 61–65.
21. Ilyushin Y. V., Kapostey E. I. Developing a comprehensive mathematical model for aluminium production in a soderberg electrolyser. Energies. 2023. Vol. 16. DOI: 10.3390/en16176313
22. Morozov V. V. et al. Testing of a unit for combined visiometric ore analysis on a conveyor. Innovatsionnye tekhnologii obogashcheniya mineralnogo i tekhnogennogo syrya. 2017. pp. 24–27.
23. Hurelchuluun I., Morozov V. V., Kruglov V. N. Application of visiometric ore analysis for automated crushing process control. Problems and prospects for efficient processing of mineral raw materials in the 21st century. Proceedings of Plaksin Readings-2019. 2019. pp. 92–95.
24. Beloglazov I. I., Suslov A. P., Pedro A. A. Process control in ore-smelting furnace at based on constant component of the phase voltages. Steel Transl. 2014. Vol. 44. pp. 901–905. DOI: 10.3103/S0967091214120031
25. Pardo F. R. O. et al. Scientific fundamentals for the use of serpentinized rocks from the eastern region of Cuba. Journal of Physics: Conference Series. 2023. Vol. 2573, Iss. 1. DOI: 10.1088/1742-6596/2573/1/012033
26. Akkoyun F. A real-time machine vision system for grading quartz mineral. Journal of Testing and Evaluation. 2022. Vol. 50, Iss. 5. P. 2422–2437. DOI: 10.1520/JTE20210758
27. Liu H. et al. Rock thin-section analysis and identification based on artificial intelligent technique. Petroleum Science. 2022. Vol. 19, Iss. 4. pp. 1605–1621. DOI: 10.1016/j.petsci.2022.03.011
28. Naseri A., Rezaei Nasab A. Automatic identification of minerals in thin sections using image processing. Journal of Ambient Intelligence and Humanized Computing. 2021. pp. 1–13. DOI: 10.1007/s12652-021-03474-5
29. Anufriev A. S., Lebedik E. A., Smirnov A. A. Automated ball charge control system for grinding units. Obogashchenie Rud. 2024. No. 1. pp. 3–9. DOI: 10.17580/or.2024.01.01
30. Nguyen H. H., Bazhin V. Yu. Optimization of the сontrol system for electrolytic copper refining with digital twin during dendritic precipitation. Metallurgist. 2023. Vol. 67, Iss. 1. pp. 41–50. DOI: 10.1007/s11015-023-01487-3
31. Xu Y., Dai Z., Luo Y. Research on application of image enhancement technology in automatic recognition of rock thin section. IOP Conference Series. 2020. Vol. 605, Iss. 1. pp. 20–22. DOI: 10.1088/1755-1315/605/1/012024
32. Ran X. et al. Rock classification from field image patches analyzed using a deep convolutional neural network. Mathematics. 2019. Vol. 7, Iss. 8. DOI: 10.3390/math7080755
33. Skamyin A., Shklyarskiy Y., Lobko K., Dobush V. et al. Impedance analysis of squirrel-cage induction motor at high harmonics condition. Indonesian Journal of Electrical Engineering and Computer Science. 2024. Vol. 33, Iss. 1. pp. 31–41. DOI: 10.11591/ijeecs.v33.i1.pp31-41
34. Anufriev A. S., Lebedik E. A., Bazhin V. Yu. New approaches to improving efficiency of automated control over ore pretreatment process stages. Mining informational and analytical bulletin. 2024. No. 2. pp. 76–92. DOI: 10.25018/0236_1493_2024_2_0_76
35. Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study. Journal of Mining Institute. 2022. Vol. 257. pp. 822–832. DOI: 10.31897/PMI.2022.84
36. Caggiano A. et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann. 2019. Vol. 68. pp. 451–454. DOI: 10.1016/j.cirp.2019.03.021
37. Santoro L. et al. A novel method for evaluation of ore minerals based on optical microscopy and image analysis: preliminary results. Minerals. 2022. Vol. 12, Iss. 11. DOI: 10.1016/j.cirp.2019.03.021

Language of full-text russian
Full content Buy
Back