Журналы →  Tsvetnye Metally →  2025 →  №3 →  Назад

NOBLE METALS AND ITS ALLOYS
Название Basics of ammonia-cyanide leaching of copper-gold ores. Review
DOI 10.17580/tsm.2025.03.04
Автор Meretukov М. А.
Информация об авторе

М. А. Meretukov, Scientific Adviser, Doctor of Technical Sciences, Professor, e-mail: mamerat@gmail.com

Реферат

One of the biggest challenges for the gold industry in the 21st century is the presence of copper in gold containing ore bodies. This is due to copper consumes large quantities of cyanide. Additionally, copper cyanide compounds are more stable than free cyanide, and hence make it difficult to destruct the tails. The ammonia-cyanide leaching system was first patented over 100 years ago and stands out as a unique method of selectively leaching up to 90% Au and <1% Cu from oxidized copper-gold. This paper reviews some of the recent applied and fundamental studies on the leaching of copper-gold ores with the ammonia-cyanide solutions and provides insights into the mechanism to give a better appreciation of the key parameters required for the optimum leaching of gold with minimum copper dissolution. The ammonia-cyanide system is known as an alternative system for the treatment of complex copper-gold ores. Thermodynamic research on the Au – Cu (Cu2O, Cu2S) – CN – NH4– O2 – OH – H2O systems allowed to establish the possibility of coexistence of Au(CN)2 – CuCN compounds in a standard solution. Copper cyanidation is faster than gold cyanidation which leads to a decrease in the content of the active reagent in the solution and negatively affects the extraction of gold. The addition of ammonia to the solution causes the formation of a strong CuNH3 compound capable of dissolving gold in the absence of free cyanide ions. In this case, copper precipitation occurs as a parallel process, leaving significant amounts of Cu (I) cyanide involved in the dissolution of gold. The critical value of the concentrations of oxygen and added ammonia in the solution, which determine the interface between the thermodynamic stability zones CuCN and CuO/Cu(OH)2, is estimated. The presence of copper sulfides in ores contributes to the dissolution of gold, while copper oxides contribute to precipitation. When cyanide solutions did not contain copper, the addition of ammonia reduced the rate of gold leaching. When copper was added to the solution, the gold recovery rate also decreased due to the formation of copper cyanide complexes. However, in the absence of free cyanide in the solution, gold was easily leached due to the formation of the Cu(CN)32– complex, and the addition of ammonia did not affect the dissolution process. At the same time, the dominance of the Cu(CN)2 complex in the solution causes an increase in the rate of gold leaching, however, in the absence of ammonia, gold recovery is very low. In the absence of free cyanide, but with sufficient ammonia content, the addition of copper (II) increases the rate of dissolution of gold compared to cyanide complexes of copper (I). The recommended leaching solution compositions, Eh and pH values make it possible to adapt them to different types of ores. The issues related to the selective recovery of gold from ammonia-cyanide solutions by cementation, coal and ion exchange adsorption are also considered.

Ключевые слова Gold, copper, ores, deposits, ammonia-cyanide solutions, cementation, adsorption
Библиографический список

1. Hedley N., Tabachnick H. Chemistry of cyanidation. Amer. Cyanamid Co. 1968. No. 23. pp. 54.
2. Aylmore M. Alternative lixiviants to cyanide for leaching gold ores. Advances in Gold Ore Processing. Amsterdam : Elsevier, 2005. pp. 562–582.
3. B. Hunt. Extraction of metals from ore or the like. Patent US, No. 699108. Published: 1902.
4. Jarman A., Brereton E. Laboratory experiments on the use of ammonia and its compounds in cyaniding cupriferous ores and tailings. Trans. Inst. Min. Metall. A. 1904/1905. pp. 289–334.
5. Fink C., Putnam G. Recovery of gold from telluride ores. Patent US, No. 2283196. Published: 1940.
6. La Brooy S., Komosa T., Muir D. Selective leaching of gold from copper-gold ores using ammonia-cyanide mixtures. Proceedings of the 5th International Conference : Extractive metallurgy. Perth, AusIMM, 1991. pp. 127–132.
7. Muir D., La Brooy S., Cao C. Recovery of gold from copper bearing ores. Proceedings of the International Conference : World Gold ’89. Reno, USA : AIME. 1989. pp. 363–374.
8. Romayna J., Ciminelli V., Freitas L. Ammoniacal cyanidation of Igarape Bahia gold-copper ores. Proceedings of the 6th SHMMT/18th ENTMME. Rio de Janeiro, Brazil, 2001.
9. Ruane M. Gold recovery from the Paris mine tailings using ammoniacal cyanide leachant. Colloq.: Processing of gold–copper ores. Perth, Aus. AMMTEC. 1991.
10. Costello M. Use of the ammonia cyanide leach system for gold copper ores with reference to the retreatment of the torco tailings. Colloq.: Processing of gold–copper ores. Perth, Aus. AMMTEC. 1991.
11. Costello M., Ritchie I., Lunt D. Use of ammonia–cyanide leach system for copper–gold ores with reference to the re-treatment of the TORCO tailings. Miner. Eng. 1992. Vol. 5. pp. 1421–1429.
12. Butcher D. Ammoniacal cyanide leaching for recovery of gold from TORCO tailing Akjoujt Mauritania. Proceedings of International Randol Gold Forum. Perth, Aus., 1995. pp. 231–238.
13. Muir D. A review of the selective leaching of gold from oxidised copper-old ores with ammonia-cyanideand new insights for plant control and operations. Miner. Eng. 2011. Vol. 24. pp. 576–582.
14. Muir D., La Brooy S., Deng T., Singh P. The mechanism of the ammonia-cyanide system for leaching copper-gold ores. Proceedings of the 4th International Symposium : Hydrometallurgy: fundamentals, technology and innovations. SME, 1993. pp. 191–204.
15. Cooper D., Plane R. Cyanide complexes of copper with ammonia and ethylenediamine. Inorg. Chem. 1966. Vol. 5. pp. 1677–1682.
16. Jeffrey M., Linda L., Breuer P., Chu C. A kinetic and electrochemical study of the ammonia cyanide process for leaching gold in solutions containing copper. Miner. Eng. 2002. Vol. 15. pp. 1173–1180.
17. Vukcevic S. A comparison of alkali and acid methods for the extraction of gold from low grade ores. Miner. Eng. 1996. Vol. 9. pp. 1033–1047.
18. Vukcevic S. The mechanism of gold extraction and copper precipitation from low grade ores in cyanide ammonia systems. Miner. Eng. 997. Vol. 10. pp. 309–326.
19. Dawson J., La Brooy S., Ritchie I. Copper-gold ore leaching: A kinetic study on the ammoniacal cyanidation of copper, chalcocite and chalcopyrite. Proceedings of AusIMM Annual Conference. Ballarat, Aus. 1997. AusIMM. Melbourne. 1997. pp. 291–297.
20. Tozawa K., Umetsu Y., Sato K. Oxidized copper phase precipitation in ammoniacal leaching. Proc. Int. Symp.: Extractive metallurgy of copper. New York : AIME, 1976. Vol. 2. pp. 706–721.
21. Muir D., Aylmore M. Thiosulfate as an alternative to cyanide for gold processing e issues and impediments. Miner. Proc. Extr. Metall. 2004. Vol. 113. pp. 2–12.
22. Muir D., Aylmore M. Thiosulfate leaching. Advances in Gold Ore Processing. Elsevier, 2005. pp. 541–561.
23. Senanayake G. The role of ligands and oxidants in thiosulfate leaching of gold. Gold Bull. 2005. Vol. 38. pp. 170–179.
24. Tran T., Nguyen H., Hsu Y., Wong P. Gold dissolution and copper suppression during leaching of copper-gold ores. Proceedings of the International Conference : World Gold ’97. AusIMM. Melbourne. 1997. pp. 95–98.
25. Dai X., Breuer P. Cyanide and copper cyanide recovery by activated carbon. Miner. Eng. 2009. Vol. 22. pp. 469–476.
26. Dicinoski G. Novel resins for the selective extraction of gold from copper rich ores. South Afr. J. Chem. 2000. Vol. 53. pp. 33–44.
27. Hosking J. The recovery of gold from ores by ion exchange resins. Proceedings of International Symposium : Gold: mining, metallurgy and geology. AusIMM. Melbourne. 1984. pp. 183–190.
28. MacPhail P., Fleming C., Sarbutt K. Cyanide recovery by the SART process for the Lobo-Marte Project Chile. Proceedings of Randol Gold Forum’98. Denver, USA. 1998. Apr. 26–29. Randol Int. 1998. pp. 319–324.
29. Dai X., Simons A., Breuer P. A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Miner. Eng. 2012. Vol. 25. pp. 1–13.
30. Kotze M. Gold ion exchange. ALTA 2010 Gold Symposium. Perth, Aus. 2010. May 27–28. ALTA Metall. Serv. Melbourne. 2010.
31. van Deventer J., Kotze M., Yahorava V. Gold recovery from copper-rich ores employing the Purolite S992 gold-selective ion exchange resin. ALTA 2012 Gold Symposium. Perth, Aus. 2012. May 26 – June 02. ALTA Metall. Serv. Melbourne. 2012.
32. Adams M., Lawrence R. Biogenic sulphide for cyanide recycle and gold recovery in gold-copper ore processing. 2nd International Symposium : Precious Metals 07. Brisbane, Aus. 2007. Aug. 30–31. 16 p.
33. Muir D., La Brooy S., Cao C. Recovery of gold from copper bearing ores. Proceedings of International Conference : World Gold ’89. USA. 1989. AIME. 1989. pp. 363–374.
34. Estay H., Gim-Krumm M., Seriche G. et al. Optimizing the SART process: A critical assessment of its design criteria. Miner. Eng. 2020. Vol. 146. Ch. 106116.
35. Medina D., Anderson C. A review of the cyanidation treatment of copper-gold ores and concentrates. Metals. 2020. Vol. 10. pp. 897–905.
36. Zalesov M., Grigorieva V., Trubilov V., Baudouin A. Development of technical solutions to improve the efficiency of processing high-grade gold ore. Min. Ind. 2021. No. 5. pp. 51–56.
37. Krumins T., Olin E., Geldart J. et al. Development of a flowsheet incorporating cyanidation, CIP, CCD and the SART process to treat flotation tailings from a Mexican copper mine. AIChE Ann. Meet. Orlando, USA. 2023. Nov. 05–10.
38. Allameh M., Hosseini M., Azimi E. Development of a sustainable alternative for the ammoniacal cyanidation of copper–gold ores through a biological approach. Sustain. Metall. 2020. Vol. 6. pp. 796–808.
39. Gorji M., Hosseini M., Ahmadi A. Comparison and optimization of the biocyanidation potentials of B. megaterium and P. aeruginosa for extracting gold from an oxidized copper-gold ore in the presence of residual glycine. Hydrometallurgy. 2020. Vol. 191. Ch. 105218.

Language of full-text русский
Полный текст статьи Получить
Назад