Journals →  Tsvetnye Metally →  2025 →  #3 →  Back

HEAVY NON-FERROUS METALS
ArticleName Promising hydrometallurgical technologies for processing zinc concentrates
DOI 10.17580/tsm.2025.03.01
ArticleAuthor Kositskaya Т. Yu., Lyakh S. I., Anohin R. R., Pirogova N. А.
ArticleAuthorData

LLC Research Center Hydrometallurgy, Saint Petersburg, Russia

Т. Yu. Kositskaya, Senior Researcher, Candidate of Technical Sciences, e-mail: kositskaya-t@gidrometall.ru
S. I. Lyakh, Chief Engineer, Candidate of Technical Sciences, e-mail: lyakh-s@gidrometall.ru
R. R. Anohin, Junior Researcher, e-mail: anohin-r@gidrometall.ru
N. А. Pirogova, Junior Researcher, e-mail: Pirogova-n@gidrometall.ru

Abstract

In recent decades, more and more attention has been paid to the issue of processing substandard zinc concentrates using hydrometallurgical technologies that make it possible to convert the bulk of sulfide sulfur into an elemental form. The results of laboratory studies of two-stage countercurrent leaching of a sample of Russian zinc concentrate under atmospheric (temperature 95–100 oC) and autoclave (temperature 145–150 oC, oxygen pressure 0.7 MPa) conditions are presented. Based on the conducted research, two technological schemes have been formed and presented that make it possible to achieve high technological performance of processing zinc concentrate by hydrometallurgical methods (without roasting). With modern equipment, the basic parameters of each leaching stage were experimentally determined. Comparative characteristics of chemistry and indicators of the main operations of the two technologies are described. The possibility of achieving high rates of zinc extraction (>98%) in a productive solution is shown. During the experiments, it was found that the schemes make it possible to effectively purify the productive solution from iron and other hydrolyzable impurities (As and Sb) before cementation purification and electrolytic deposition of zinc. The main advantages and disadvantages of primary operations, as well as related subsequent operations of purifying the productive solution, are analyzed. A granulometric analysis of leaching residues was performed. The indicators of pulp dehydration after two stages of atmospheric and autoclave leaching are presented with a brief justification of the possible causes of the sedimentation characteristics of the obtained pulps.

keywords Zinc, iron, copper, sphalerite, atmospheric leaching, autoclave leaching, oxygen, elemental sulfur.
References

1. Klya in S. E., Kozlov P. A., Naboichenko S. S. Extraction of zinc from ore raw materials. Yekaterinburg : GOU UGTU–UPI, 2009. 491 p.
2. Pansh in A. M., Zatonskiy A. V., Kozlov P. A., Kondratyuk A. A. Deve lopment of roasting process of fine dispersing zinc concentrates of the ural deposits on JSC “Chelyabinsk zinc plant”. Tsvetnye Metally. 2010. No. 5. pp. 34–37.
3. Wood J., Coveney J., Helin G., Xu L., Xincheng S. The Outotec® Direct zinc smelting process. Proceedings of EMC 2015: European metallurgical conference, Germany. 2015.
4. Berdiyarov B., Matkarimov S. Method for oxidative roasting of sulfide zinc concentrates in an air oxygen stream in fluidized bed furnaces. IOP Conference Series: Earth and Environmental Science. 2023. Vol. 1142. 012035. DOI: 10.1088/1755-1315/1142/1/012035
5. Kania H., Sa ternus M. Evaluation and Current State of Primary and Secondary Zinc Production. Applied Sciences. 2023. Vol. 13, Iss. 3. 2003. DOI: 10.3390/app13032003
6. Picazo-Rodríguez N. G. et al. Direct acid leaching of sphalerite: An approach comparative and kinetics analysis. Minerals. 2020. Vol. 10, Iss. 4. 359. DOI: 10.3390/min10040359
7. Nnanwube I. A., Onukwuli O. D., Ezekannagha C. B. Kinetics of sphalerite dissolution for potential zinc recovery via oxidative leaching. Canadian Metallurgical Quarterly. 2024. Vol. 63, Iss. 4. pp. 1592–1603. DOI: 10.1080/00084433.2024.2306037
8. Svens K. Direct l eaching alternatives for zinc concentrates. T. T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, ed. by W. Shijie, J. E. Dutrizac, M. L. Free, J. Y. Hwang, D. Kim. 2012. pp. 191–206.
9. Sadykov S. B. Auto clave processing of low-grade zinc concentrates. Yekaterinburg : UrO RAN, 2006. 582 p.
10. Takkala H. Leaching of zinc concentrates at the Kokkola plant. Obogashchenie Rud. Tsvetnye Metally. Special issue. 2001. June. pp. 65–68.
11. Svens K. Outotec at mospheric zinc concentrate direct leaching process – past, present and future. World of Metallurgy. ERZMETALL. 2010. Vol. 63, Iss. 3. pp. 136–144.
12. Mirzoev P., Bodnarchuk T. Sulfate-balance control strategy at the Flin Flon zinc plant. COM 2015. The Conference of Metallurgists. Canadian Institute of Mining, Metallurgy and Petroleum. 2015. pp. 1–16.

13. Gu Yan, Zhang T., Liu Y ., Mu W. et al. Pressure acid leaching of zinc sulfide concentrate. Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. pp. S136–S140. DOI: 10.1016/S1003-6326(10)60028-3
14. Krysa B. D. Zinc pressure leaching at HBMS. Hydrometallurgy. 1995. Vol. 39, Iss. 1-3. pp. 71–77. DOI: 10.1016/0304-386X(95)00046-J
15. Haakana T., Saxén B., Lehtin en L., Takala H. et al. Outotec direct leaching application in China. Journal of the Southern African Institute of Mining and Metallurgy. 2008. Vol. 108, No. 5. pp. 245–251.
16. Xu Z., Jiang Q., Wang C. Atmos pheric oxygen-rich direct leaching behavior of zinc sulphide concentrate. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Iss. 12. pp. 3780–3787. DOI: 10.1016/S1003-6326(13)62929-5
17. Sadykov S., Kalanchey R., McCona ghy E., Stiksma J. et al. Commercialization of Dynatec Zinc pressure leach process at Kazakhmys Corporation in Balkhash, Kazakhstan. Pressure Hydrometallurgy 2004 : 34th Annual Hydrometallurgy Meeting. Banff, Alberta, Canada. October 23–27, 2004. pp. 929–949.
18. Sadeghi N., Moghaddam J., Ilkhchi M. O. Determination of effective parameters in pilot plant scale direct leaching of a zinc sulfide concentrate. Physicochemical Problems of Mineral Processing. 2017. Vol. 53, Iss. 1. pp. 601–616. DOI: 10.5277/ppmp170147
19. Kazanbaev L. A., Kozlov P. A., K olesnikov A. V., Kondratyuk A. A., Kuteinikov V. N. On the issue of iron conversion in the leaching of zinc sulfide materials under atmospheric conditions. Tsvetnye Metally. 2005. No. 5-6. pp. 20–24.
20. Soloveva G. V., Kolmachihina E. B., Ma myachenkov S. V. Thermodynamic analysis of the stoichiometry of the dissolution of zinc sulfide in a sulfuric acid solution with oxygen. Izvestiya vuzov. Khimicheskaya promyshlennost. 2020. No. 4. pp. 22–28. DOI: 10.17073/0021-3438-2020-4-22-28
21. Lugovitskaya T. N., Kolmachihina E. B., Naboychenko S. S. On the issue of the use of surfactants to intensify the processes of high-temperature autoclave leaching of sulfide minerals. Sovremennye tekhnologii proizvodstva tsvetnyh metallov : Proceedings of the International Scientific Conference dedicated to the 80 th anniversary of S. S. Naboychenko. Yekaterinburg : Ural University Press, 2022. pp. 59–64.
22. Karimi S., Rashchi F., Ghahreman A. The e valuation of sphalerite surface formed during oxidative leaching in acidic ferric sulfate media. Journal of Sustainable Metallurgy. 2021. Vol. 7, Iss. 3. pp. 1304–1313. DOI: 10.1007/s40831-021-00418-3
23. Goryachkin V. I., Nelen I. M., Shneerson Ya. M. Hydrometallurgical processing of copper-nickel pyrrhotite concentrates based on autoclave oxidative leaching. Gidrometallurgiya. Avtoklavnoe vyshchelachivaniya, sorbtsiya, ekstraktsiya. Мoscow : Nauka, 1976. pp. 48–59.
24. Ashman D. W., Jankola W. A. Zinc pressure lea ching at Cominco. Lead – Zinc 90. Edited by T. S. Mackey, R. D. Prengman. The Minerals, Metals & Materials Society, 1980.
25. Sheptunov N. A., Mihailov I. I., Ledeneva G. Z. Me thod of obtaining sulfur. Author certificate USSR, No. 891555. Bulletin No. 47. Published: 23.12.1981.
26. Kositskaya T. Yu., Lapin A. Yu., Shneerson Ya. M. H ydrometallurgical operations in complex technology of limonite ores processing. Tsvetnye Metally. 2020. No. 9. pp. 78–84.

Language of full-text russian
Full content Buy
Back