Журналы →  Цветные металлы →  2025 →  №3 →  Назад

Металлообработка
Название Деформационные процессы при высокоскоростном фрезеровании алюминиевых сплавов
DOI 10.17580/tsm.2025.03.11
Автор Адмакин М. А., Адмакина О. Н., Тимофеев Д. Ю., Халимоненко А. Д.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

М. А. Адмакин, доцент кафедры машиностроения, канд. техн. наук, эл. почта: Admakin_MA@pers.spmi.ru
Д. Ю. Тимофеев, доцент кафедры машиностроения, канд. техн. наук, эл. почта: timofeev_dyu@pers.spmi.ru
А. Д. Халимоненко, доцент кафедры машиностроения, канд. техн. наук, эл. почта: Khalimonenko_AD@pers.spmi.ru

 

Санкт-Петербургский гуманитарный университет профсоюзов, Санкт-Петербург, Россия

О. Н. Адмакина, старший преподаватель кафедры информатики и математики, эл. почта: spszk1@yandex.ru

Реферат

Исследованы деформационные процессы при высокоскоростном фрезеровании деформируемых алюминиевых сплавов. Отмечены особенности высокоскоростного фрезерования по сравнению с традиционными методами обработки. По результатам проведенных экспериментов при высокоскоростной обработке деформируемых алюминиевых сплавов в первой серии опытов определены параметры стружки при фрезеровании с постоянными значениями подачи на зуб фрезы и глубины фрезерования. Во второй серии опытов выявлены параметры стружки в зависимости от скорости резания при фрезеровании с постоянными значениями минутной подачи и глубины фрезерования. По результатам экспериментов установлена зависимость коэффициента усадки стружки от скорости резания при постоянных значениях подачи на зуб фрезы и при постоянной минутной подаче при высокоскоростном фрезеровании. Дополнительно определены такие параметры деформационных процессов образования стружки при высокоскоростном фрезеровании, как угол наклона плоскости сдвига, относительный сдвиг при резании, скорость деформации относительного сдвига, угол текстуры стружки и др. Анализ полученных данных позволил установить, что коэффициент усадки стружки практически не меняется при высокоскоростном фрезеровании с постоянной подачей на зуб, при снижении подачи на зуб и увеличении скорости резания уменьшается размер стружки и увеличивается усадка стружки, скорость относительной деформации увеличивается при увеличении скорости и одновременном уменьшении подачи на зуб (толщины среза). Полученные результаты предложено использовать в практической деятельности предприятий машиностроительного комплекса при обработке деформируемых алюминиевых сплавов.

Ключевые слова Фрезерование, высокоскоростная обработка, алюминиевые сплавы, скорость резания, усадка стружки, сила резания, подача на зуб, износ инструмента, минутная подача, стружка
Библиографический список

1. Gabov V. V., Garashchenko Zh. M. Defining the structure of a mechanised complex for extracting coal pillars. Gornyy informatsionno-analiticheskiy byulleten. 2023. No. 11–1. pp. 38–50. DOI: 10.25018/0236_1493_2023_1 11_0_38
2. Khamidov O. U., Shibanov D. A., Shishkin P. V., Kolpakov V. O. Efficiency of excavators application in open pit mines of Uzbekistan. Gornaya promyshlennost. 2024. No. 5. pp. 135–142. DOI: 10.30686/1609-9192-2024-5-135-142
3. Gabov V. V., Zadkov D. A., Pryaluhin A. F., Sadovskiy M. V. et al. Mining combine screw executive body design. Gornyy informatsionno-analiticheskiy byulleten. 2023. No. 11–1. pp. 51–71. DOI: 10.25018/0236_1493_2023_111_0_51
4. Shishlyannikov D. I., Zverev V. Yu., Zvonareva A. G., Frolov S. A. et al. Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions. Journal of Mining Institute. 2023. Vol. 261. pp. 349–362.
5. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., Ignatev S. A. et al. Results of complex experimental studies at Vostok station in Antarctica. Journal of Mining Institute. 2023. Vol. 263. pp. 724–741.
6. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022. Vol. 32, Iss. 1. pp. 113–119. DOI: 10.1016/j.ijmst.2021.09.010
7. Korogodin A. S., Ivanov S. L. Maintenance and repair of drum mill trunnions of a floating mining equipment complex. Sustainable Development of the Mountain Territories. 2023. Vol. 15. No. 3. pp. 760–770. DOI: 10.21177/1998-4502-2023-15-3-760-770
8. Myakotnyh A. A., Ivanova P. V., Ivanov S. L. Criteria and technological requirements for creation of a bridge platform to extract peat raw materials for climate-neutral geotechnology. Gornaya promyshlennost. 2024. No. 4. pp. 116–120. DOI: 10.30686/1609-9192-2024-4-116-120
9. Maksarov V. V., Karenina R. A., Sinyukov M. S. Improving the technology of finishing abrasive treatment in a magnetic field of the lock joint threaded surface of the structural alloy steel lock joint for drill rods. Chernye Metally. 2024. No. 9. pp. 65–70.
10. Efimov A. E., Uspenskaya V. D., Motrich A. A. Improving the quality of processing articles made of low-alloy ferrite-pearlite steels using concentrated laser emission. Chernye Metally. 2024. No. 9. pp. 77–81.
11. Maksarov V. V., Minin А. О., Vasilkov D. V. The use of high-frequency wave action for technological quality assurance of boring surfaces of products made of corrosion-resistant aluminum alloys. Tsvetnye Metally. 2025. No. 1. pp. 76–83.
12. Vogler M. P., Devor R. E., Kapoor S. G. On the modeling and analysis of machining performance in micro-end milling. Journal of Manufacturing Science and Engineering. 2004. Vol. 126, Iss. 4. pp. 685–694. DOI: 10.1115/1.1813470
13. Zhu K., Zhang Y. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling. Mechanical Systems and Signal Processing. 2019. Vol. 115. pp. 147–161. DOI: 10.1016/j.ymssp.2018.05.045.
14. Hricova J., Kovac M., Sugar P. Experimental investigation of high speed milling of aluminium alloy. Tehnicki vjesnik – Technical Gazette. 2014. Vol. 21, Iss. 4. pp. 773–777.
15. Rao B., ShinY. C. Analysis on high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutters. International Journal of Machine Tools & Manufacture. 2001. Vol. 41. pp. 1763–1781. DOI: 10.1016/S0890-6955(01)00033-5
16. List G., Nouari M., Géhin D., Gomez S. et al. Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear. 2005. Vol. 259. pp. 1177–1189. DOI: 10.1016/j.wear.2005.02.056
17. Yu F. Y., Feng M. J., Dai M. J., Sun H. J. Experimental study on high-speed milling of aluminum alloy 2A70. Advanced Materials Research. 2011. Vol. 314–316. pp. 1788–1791. DOI: 10.4028/www.scientific.net/amr.314-316.1788
18. Šramhauser K., Kraus P., Špalek F., Serný P. et al. Intercomparison of indexable cutting inserts’ wear progress and chip formation during machining hardened steel AISI 4337 and austenitic stainless steel AISI 316 L. Materials. 2024. Vol. 17. 5418. DOI: 10.3390/ma17225418
19. Meng X. X., Lin Y. X. Chip morphology and cutting temperature of ADC12 aluminum alloy during high-speed milling. Rare Metals. 2021. Vol. 40. pp. 1915–1923. DOI: 10.1007/s12598-020-01486-2
20. Meng X., Lin Y., Mi S. The research of tool wear mechanism for high-speed milling ADC12 aluminum alloy considering the cutting force effect. Materials. 2021. Vol. 14. 1054. DOI: 10.3390/ma14051054
21. Bazhin V. Yu., Ustinova Ya. V., Fedorov S. N., Shalabi M. E. Kh. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials. Journal of Mining Institute. 2023. Vol. 261. pp. 384–391.
22. Zykova A., Martyushev N., Skeeba V., Zadkov D. et al. Influence of W addition on microstructure and mechanical properties of Al – 12 % Si alloys. Materials. 2019. Vol. 12, Iss. 6. 981. DOI: 10.3390/ma12060981
23. Alattar A. L., Nikitina L. N., Bazhin V. Y. Increase in the physicomechanical properties of aluminum alloys reinforced with boron carbide particles. Russian Metallurgy (Metally). 2023. Vol. 2023, Iss. 6. pp. 688–694. DOI: 10.1134/S0036029523060071
24. Keksin A. I., Sorokopud N. I., Zakirov N. N. Peculiarities of abrasive finishing of surfaces of parts made of aluminium alloy of АМts grade in magnetic field. International Journal of Engineering. Transactions C: Aspects. 2024. Vol. 37, Iss. 6. pp. 1098–1105. DOI: 10.5829/ije.2024.37.06c.06
25. Bazhenova N. N. Studying aluminum processing problems. Molodoy uchenyy. 2017. No. 7. pp. 38–40.
26. Santos M. C., Machado A. R., Sales W. F., Barrozo M. A. S. et al. Machining of aluminum alloys: a review. International Journal of Advanced Manufacturing Technology. 2016. Vol. 86. pp. 3067–3080. DOI: 10.1007/s00170-016-8431-9
27. Serbin D. V., Dmitriev A. N. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter. Journal of Mining Institute. 2022. Vol. 257. pp. 833–842.
28. Koposov P. V., Zhukov I. A., Boiko V. S. Justification of the practical application of jaw crushing machines with a non-linear cheek shape. Gornyy informatsionno-analiticheskiy byulleten. 2023. No. 11–1. pp. 102–115. DOI: 10.25018/0236_ 1493_2023_111_0_102
29. Khalimonenko A. D., Shmakova Yu. R., Admakina O. N., Kufaev V. G. High-speed face milling features of deformable aluminum alloys. Tsvetnye Metally. 2024. No. 6. pp. 81–88.
30. Shirokikh E. V., Kosyanova A. K. Efficiency of applying ultra-hard materials for high-speed machining of aluminum alloys of metals. Kompleksnye problemy razvitiya nauki, obrazovaniya i ekonomiki regiona. 2014. No. 2. pp. 96–101.
31. Nikolaev A. Yu., Savilov A. V. Pre-production effectiveness increase at high-speed high-strength aluminum parts milling. Naukoemkie tekhnologii v mashinostroenii. 2021. No. 2. pp. 36–40. DOI: 10.30987/2223-4608-2021-2-36-40
32. Patraev E. V., Vakulin M. S., Gordeev Yu. I., Yasinskiy V. B. High-speed micro milling of parts made of composite materials and aluminum alloys. Izvestiya vuzov. Mashinostroenie. 2021. No. 12. pp. 62–72. DOI: 10.18698/0536-1044-2021-12-62-72
33. Pham T. H. Simulation studies on chip formation process in high speed milling of aluminium alloy. Vietnam Journal of Science and Technology. 2018. Vol. 54, Iss. 5A. 174. DOI: 10.15625/2525-2518/54/5A/12075
34. Pham T. H., Luyen T. T., Nguyen D. T. Investigating the correlation between surface roughness and degree of chip segmentation in A7075 aluminum alloy milling across varied cutting speeds. Sa–dhana–. 2024. Vol. 49. 193. DOI: 10.1007/s12046-024-02540-w
35. Ershov D., Lukyanenko I., Zlotnikov E. Mathematical modeling of drive transitive process with linear change in control input. CEUR Workshop Proceedings. 2021. Vol. 2899. pp. 31–35. DOI: 10.47813/dnit-mip3/2021-2899-31-35
36. Pompeev K. P., Pleshkov A. A., Borbotko V. A. Interactive synthesis of technological dimensional schemes. Lecture Notes in Mechanical Engineering. 2021. pp. 122–135. DOI: 10.1007/978-3-030-62062-2_13
37. Basova T. V., Andreev Y. S. Maintenance of operable condition of a flexible production system through the development and implementation of a method for cutting tools and workpieces operational control. Proceedings – 2024 International Russian Smart Industry Conference, SmartIndustryCon 2024. 2024. pp. 488–493. DOI: 10.1109/SmartIndustryCon61328.2024.10516256
38. GOST 4381–87. Lever-type micrometers. General specifications. Introduced: 01.01.1988.

Language of full-text русский
Полный текст статьи Получить
Назад