Journals →  Горный журнал →  2025 →  #1 →  Back

ОБЕСПЕЧЕНИЕ ГЕОМЕХАНИЧЕСКОЙ БЕЗОПАСНОСТИ
ArticleName Прямой динамический метод расчета каркаса промышленного здания на действие сейсмической нагрузки от буровзрывных работ
DOI 10.17580/gzh.2025.01.08
ArticleAuthor Яваров А. В., Трофимов А. В., Тяпкина П. А., Федосеев А. В.
ArticleAuthorData

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия

Яваров А. В., канд. техн. наук, доцент, yavarov_av@spbstu.ru

 

ООО «Институт Гипроникель», Санкт-Петербург, Россия
Трофимов А. В., зам. директора Департамента по исследованиям и разработкам, канд. техн. наук
Тяпкина П. А., младший научный сотрудник лаборатории геотехники
Федосеев А. В., ведущий научный сотрудник лаборатории геотехники, канд. техн. наук

Abstract

В представляемом исследовании описывается приложение прямого динамического метода к расчету зданий и сооружений в зоне влияния буровзрывных работ. В частности, излагается методика построения расчетных моделей, в которой нагрузки задаются с помощью сейсмограмм, полученных при проведении сейсмического мониторинга. Результаты моделирования позволяют оценить напряженно-деформированное состояние конструкций и уточнить рекомендации по допустимым величинам скоростей для каждого объекта в зоне влияния буровзрывных работ.

keywords Буровзрывные работы, сейсмическое действие взрыва, скорость смещения грунта, прочность сооружений, прямой динамический метод расчета, метод конечных элементов
References

1. AS 2187.2–2006. Explosives—Storage and use. Part 2: Use of explosives. Sydney : Standards Australia, 2006. 10 p.
2. Siskind D. E., Stagg M. S., Kopp J. W., Dowding C. H. S tructural Response and Damage Produced by Ground Vibration from Surface Mine Blasting : Report of Investigations 8507. Series: United States. Washington : Bureau of Mines, 1980. 84 p.
3. BS 6472-2:2008. Guide to Evaluation of Human Exposure t o Vibration in Buildings. Blast-Induced Vibration. London : British Standards Institution, 2008. 24 p
4. BS 7385-2:1993. Evaluation and Measurement for Vibratio n in Buildings. Part 2: Guide to Damage Levels from Groundborne Vibration. London : British Standards Institution, 1993. 16 p.
5. DIN 4150-1:2022-01. Erschütterungen im Bauwesen. Teil1: Vorermittlung von Schwingungsgrößen. Berlin : Deutsches Institut für Normung, 2022. 55 s.
6. DIN 4150-3:2016-12. Erschütterungen im Bauwesen. Teil 3. Ei nwirkungen auf bauliche Anlagen. Berlin : Deutsches Institut für Normung, 2016. 23 s.
7. ISO 4866:2010. Mechanical Vibration and Shock. Vibration of Fixed Structures. Guidelines for the Measurement of Vibrations and Evaluation of Their Effects on Structures. Geneva : International Organization for Standardization, 2010. 40 p.
8. NS 8141-1:2022. Vibrasjoner og støt—Veiledende grenseverdier for byggeog anleggsvirksomhet, bergverkog trafikk. Del 1: Virkning av vibrasjoner og lufttrykkstøt på byggverk, inkludert tunneler og bergrom. Oslo : Standard Norge, 2022.
9. SS 460 4866:2011. Vibration och stöt—Riktvärden för sprängningsinducerade vibrationer i byggnader. Stockholm : Swedish Standards Institute, 2011.
10. GOST R 52892–2007. Vibration and Shock. Vibration of Buildings. Measurement of Vibration and Evaluation of Its Effects On Structure. Moscow : Standartinform, 2008. 20 p.
11. Darbinyan T. P., Fedoseev A. V., Yavarov A. V., Tyapkina P. A. Evaluation criteria of blasting-induced seismic effect on buildings and structures in global practices and in regulatory documents. Gornyi Zhurnal. 2024. No. 3. pp. 17–24.
12. Persson P.-A., Holmberg R., Jaimin Lee. Rock Blasting and Explosives Engi neering. London : CRC Press, 1994. 560 p.
13. Medvedev S. V. Blasting-Induced Seismicity in Mining. Moscow : Nedra, 1964. 188 p.
14. Tseytlin Ya. I., Smoliy N. I. Seismic and Shock Air Waves of Industrial Blasts. Moscow : Nedra, 1981. 192 p.
15. Sadovskiy M. A. Geophysics and Physics of Explosion: Selectals. Moscow : Nauka, 2004. 440 p.
16. Nasonov I. D. Modeling of Mining Processes. Moscow : Nedra, 1969. 206 p.
17. Kholodilov A. N., Istomin R. S., Kirilenko V. I. Improvement technique for manufacturing equivalent materials for modeling nonlinear geomechanical processes in underground mineral mining. MIAB. 2024. No. 10. pp. 108–122.
18. Fadeev A. B. Finite Element Method in Hy dromechanics. Moscow : Nedra, 1987. 221 p.
19. Golovchenko Yu. Yu., Lepekhin I. S., Rumyantsev A. E., Sonnov M. A., Trofimov A. V. Development of numerical geomechanical models with different levels of detail using the example of the Angidrit underground mine of the Kayerkansky ore mine. Gornaya Promyshlennost. 2023. No. 4. pp. 79–88.
20. Bathe K.-J. Finite Element Procedures. New Jersey : Prentice Hall, 1996. 1037 p.
21. Geraymovich Yu. D., Evzerov I. D., Kirichok V. V., Kolesnikov A. V., Kuztetsova E. V. et al. LIRA 10.12 Software System : User’s Manual. Lira Soft LLC, 2021. 859 p.
22. SP 14.13330.2018. Seismic Building Design Code (SNiP II-II-7-81). Moscow : Standartinform, 2018. 114 p.
23. Nuzhdin L. V., Mikhaylov V. S., Konovalova S. V. Refinement of methods for dynamic loads assessment considering frame buildings in the conditions of technical seismic impact. Prirodnye i tekhnogennye riski. Bezopasnost sooruzheniy. 2019. No. 3(40). pp. 53–60.
24. Perelmuter A. V., Slivker V. I. Design Models of Structures and Their Analysis. Moscow : DMK, 2009. 596 p.
25. Malkov N. M., Stotsenko A. A. Structural Model Design : Tutorial. Vladivostok : DVPI, 1986. 80 p.
26. Kassimali A. Structural Analysis. 5th ed. Stamford : Cengage Learning, 2015. 814 p.
27. Perelmuter A. V. Interviews on Structural Mechanics. 3rd revised and enlarged edition. Moscow : SCAD Soft, 2018. 330 p.
28. Shashkin A. G. Design of Buildings and Underground Structures in Complicated Geotechnical Conditions in Saint-Petersburg. Moscow : Geomarketing, 2014. 351 p.
29. Ulitskiy V. M., Shashkin A. G., Shashkin V. A. Principles of Joint Design of Buildings and Foundations. Saint-Peterburg : Izdatelstvo instituta “Georekonstruktsiya”, 2014. 327 p.
30. Tyapkina P. A., Yavarov A. V., Fedoseev A. V. Primary processing of instrument records of vibrations in structures caused by drilling and blasting operations. Inzhenernye issledovaniya. 2024. No. 2(17). pp. 3–12.
31. Le Ty Kuang Chung. Method of Static Inclusion of Higher Modes of Vibrations in Structural Dynamics Desings : Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2021. 119 p.
32. Gordeev V. N., Lantukh-Lyashchenko A. I., Pashinskiy V. A., Perelmuter A. V., Pichugin S. F. Loads and Effects on Buildings and Structures. 3rd revised edition. Moscow : SCAD Soft, 2009. 514 p.
33. SP 20.13330.2016. Loads and Actions (SNiP 2.01.07-85). Moscow, 2016. 80 p.
34. SP 15.13330.2020. Masonry and Reinforced Masonry Structures (SNiP П-22-81). Moscow : Standartinform, 2021. 88 p.
35. SP 16.13330.2017. Steel Structures (SNiP II-23-81). Moscow : Standartinform, 2017. 150 p.
36. SP 63.13330.2018. Concrete and Reinforced Concrete Structures. General Provisions (SNiP 52-01–2003) . 126 p.
37. SP 64.13330.2017. Timber Structures (SNiP II-25–80). Moscow : Standartinform, 2017. 90 p.
38. SP 413.1325800.2018. The buildings and Structures under Dynamic Actions. Design Rules . Moscow : Standart inform, 2019. 36 p.
39. Kaprielov S. S., Sheynfeld A. V., Travush V. I., Karpenko N. I., Krylov S. B. Assessment of strength and deformation characteristics of high-strength concrete in structures and the dynamics of their changes over time. Stroitelny materialy. 2023. No. 11. pp. 28–38.
40. Kaprielov S. S., Sheinfeld A. V., Selyutin N. M. Control of heavy concrete characteristics affecting structural stiffness. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18, No. 1. pp. 24–39.
41. Babanov V. V., Evseev N. A. Sizing of stiffness parameters of reinforced concrete structures in finite-element dy namic calculation of facilities. Zhilishchnoe stroitelstvo. 2017. No. 12. pp. 26–29.
42. Rutman Yu. L., Ostrovkaya N. V. Methods of Theory of Vibrations in Problems in Structural Dynamics : Tutorial. Saint- Petersburg : SPbGASU, 2019. 137 p.
43. GOST R 52892–2007. Vibration and Shock. Vibration of Buildings. Measurement of Vibration And Evaluation of Its Effects on Structure. Moscow : Standartinform, 2008. 20 p.
44. Kurzych A. T., Jaroszewicz L. R., Dudek M., Kowalski J. K., Bernauer F. et al. Meas urements of rotational events generated by artificial explosions and external excitations using the optical fiber sensors network. Sensors. 2020. Vol. 20, Iss. 21. ID 6107.

Language of full-text russian
Full content Buy
Back