Журналы →  Chernye Metally →  2025 →  №1 →  Назад

Economics and Finances
Название Technological foundations of decarbonization in the supply chains of the Russian ferrous metallurgy
DOI 10.17580/chm. 2025.01.14
Автор S. P. Petrov
Информация об авторе

Institute of Economics and Industrial Engineering, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

S. P. Petrov, Cand. Econ., Head of the Dept. of Applied Regional Studies, e-mail: petrov.s.p@mail.ru

Реферат

Ferrous metallurgy is carbon-intensive industry with wide production scales, which justifies its leading position in Russia in terms of pollutants emissions into the atmosphere in the sector of industrial processes and product use. This creates certain risks for ferrous metal producers, for example, reputational risks associated with changes in the preferences of end consumers and society as a whole, and actualizes such a direction of industry development as decarbonization. The production of ferrous metals is a complex process and includes a number of stages that form supply chains around metal producers with certain technological production schemes. On the one hand, in order to reduce the negative impact on the environment, such a chain structure requires the use of integrated solutions, on the other hand, when they are implemented, synergistic effects of reducing the negative impact will arise, which in turn will allow the implemented enterprises to form competitive advantages in the market and receive economic rent. To do this, it is necessary to have an understanding of the contribution to the total pollutants emissions of supply chain stages in the ferrous metallurgy, taking into account the technological production schemes used in them, which will allow identifying promising technologies to reduce such emissions. This will allow specific enterprises, which develop modernization projects or projects of forming new production facilities, to identify technologies that lead to achieving the minimum possible negative impact on the environment, taking into account the economic feasibility of their implementation.
The article was prepared according to the research plan of the IEIE SB RAS, project 5.6.1.5. (0260-2021-0002) “Integration and interaction of mesoeconomic systems and markets in Russia and its eastern regions: methodology, analysis, forecasting”, No. 121040100284-9.

Ключевые слова Ferrous metallurgy, supply chains, Russian metallurgical districts, environment, carbon dioxide, decarbonization technologies, non-mining metallurgy, hydrogen metallurgy, CCUS
Библиографический список

1. Glushakova O. V., Chernikova O. P. The influence of ferrous metallurgy enterprises on the quality of atmospheric air as an ecological component of sustainable development of territories. Message 1. Izvestiya vuzov. Chernaya metallurgiya. 2021. Vol. 64. No. 4. pp. 292–301. DOI: 10.17073/0368-0797-2021-4-292-301
2. Zinchenko Yu. V. Policy of the corporate sector of the Russian and world economy in the context of transition to sustainable development (on the example of industry): thesis of inauguration of Dissertation … of Candidate of Economic Sciences. IEF RAS, 2020. 26 p.
3. National inventory report of anthropogenic emissions by sources and removals by sinks of greenhouse gases not controlled by the Montreal Protocol for 1990–2021. FGBU “IGKE“, 2023. Available at: http://www.igce.ru/performance/publishing/reports/ (accessed: 15.05.2023).
4. Schumpeter J. A. Capitalism, Socialism and Democracy. Moscow : Ekonomika, 1995. 540 p.
5. Gordon Y., Kumar S., Freislich M., Yaroshenko Y. The modern technology of iron and steel production and possible ways of their development. Izvestiya. Ferrous Metallurgy. 2015. Vol. 58. No. 9. pp. 630–637.
6. Alabushev E. A., Bersenev I. S., Bragin V. V., Stepanova A. A. Risk assessment of hydrogen use instead of carbon-containing fuels in ferrous metallurgy. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2021. Vol. 77. No. 8. pp. 925–930. DOI: 10.32339/0135-5910-2021-8-925-930
7. Boranbaeva B. M., Myrzagulova A. T., Tazhiev Sh. Kh., Mayshina Zh. G. A promising method for producing iron-containing alloys from ore raw materials. Nauka i tekhnika Kazakhstana. 2020. No. 4. pp. 25–32. DOI: 10.48081/VTUX4454
8. Sun M., Pang K., Barati M., Meng X. Hydrogen-based reduction technologies in low-carbon sustainable ironmaking and steelmaking: a review. Journal of Sustainable Metallurgy. 2023. Vol. 10. pp. 10–25. DOI: 10.1007/s40831-023-00772-4
9. Collins L. This new technology could kill the business case for hydrogen in green steel production. Available at: https://www.hydrogeninsight.com/innovation/this-new-technology-couldkill-the-business-case-for-hydrogen-in-green-steel-production/2-1-1609504 (accessed: 29.05.2024).
10. Carvalho D. What’s next for green steel technologies? Available at: https://www.woodmac.com/news/opinion/whats-next-for-green-steel-technologies/ (accessed: 29.05.2024).
11. Metallurgists will have to master technologies for capturing and storing carbon dioxide. Metallosnabzhenie i sbyt. 2021. Available at: https://www.metalinfo.ru/ru/news/128613 (accessed: 11.08.2021).
12. Steel’s contribution to a low carbon future and climate resilient societies. Worldsteel position paper. Available at: https://www.worldsteel.org/en/dam/jcr:7ec64bc1-c51c-439b-84b8-94496686b8c6/Position_paper_climate_2020_vfinal.pdf (accessed: 26.01.2021).
13. Information and technical reference book on the best available technologies ITS NDT 26-2022 “Production of cast iron, steel and ferroalloys”. Byro NDT. 2022. Available at: https://burondt.ru/NDT/NDTDocsDetail.php?UrlId=1846&etkstructure_id=1872 (accessed: 26.05.2023).
14. Umansky A. A., Kozyrev N. A., Dumova L. V. Analysis of the relationship between the composition of the electric smelting metal charge and the main technical and economic indicators of rail steel smelting. Vestnik Sibirskogo gosudarstvennogo industrialnogo universiteta. 2017. No. 3. pp. 24–28.
15. Ovchinnikov K. N. Carbon footprint of the metallurgical industry and a review of promising solutions for its decarbonization in China, the USA and Germany. Ekologiya nedropolzovaniya. 2022. No. 5. pp. 97–107.
16. Emissions from the Metallurgical Industry. IPCC Guidelines for national greenhouse gas inventories, 2006 / IPCC, 2006. Available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/russian/pdf/3_Volume3/V3_4_Ch4_Metal_Industry.pdf (accessed: 26.01.2023).
17. Petrov S. P. Application of the IPCC methodology to assess the spatial distribution of CO2 emissions in the ferrous metallurgy of Russia. Problemy prognozirovaniya. 2024. No. 1(202). pp. 81–89.
18. Petrov S. P. Ferrous metallurgy of Asian Russia in the second and third decades of the 21st century Novosibirsk: Izdatelstvo IEOPP SO RAN, 2023. 240 p.
19. Production of the main types of products in physical terms since 2017 (in accordance with OKPD2). Unified Interdepartmental Information and Statistical System (EMISS). Available at: https://www.fedstat.ru/indicator/58636 (accessed: 18.06.2024).
20. Information and technical reference book on the best available technologies ITS NDT 25-2021 “Mining and beneficiation of iron ores”. Byro NDT. 2021. Available at: http://burondt.ru/NDT/NDTDocsDetail.php?UrlId=1675&etkstructure_id=1872 (accessed: 10.01.2022).
21. Branca T. A., Fornai B., Colla V., Murri M. M. et al. Current and future aspects of the digital transformation in the European Steel Industry. Matériaux & Techniques. 2020. Vol. 108, Iss. 4. pp. 1–10. DOI: 10.1051/mattech/2021010
22. Osiptsov A., Gayda I., Grushevenko E., Kapitonov S. Technologies for the carbon capture, use and storage (CCUS). Moscow : Scoltech, 2022. 79 p.
23. Skobelev D. O., Cherepovitsyna A. A., Guseva T. V. Carbon dioxide sequestration technologies: role in achieving carbon neutrality and approaches to cost assessment. Zapiski Gornogo instituta. 2023. Vol. 259. pp. 125–140. DOI: 10.31897/PMI.2023.10
24. Cherepovitsyna A. A., Cherepovitsyn A. E., Kuznetsova E. A. Projects for the СО2 capture, sto rage and use, and their economic feasibility. EKO. 2024. No. 1. pp. 117–131.
25. Rovbo A. S., Golubev I. A., Shaposhnikov N. O., Penigin A. V. et al. Approaches to the selection of material execution of infrastructure facilities for transport and injection of СО2. Izvestiya vuzov. Chernaya metallurgiya. 2024. Vol. 67. No. 2. pp. 229–236.
26. Rosner F., Papadias D., Brooks K., Yoro K. et al. Green steel: design and cost analysis of hydrogen-based direct iron reduction. Energy Environ. Sci. 2023. Vol. 16. pp. 4121–4134.
27. Nicholas S. “Hard-to-abate” must not become code for delaying steel decarbonisation. Renew Economy. 2023. Available at: https://reneweconomy.com.au/hard-to-abate-must-notbecome-code-for-delaying-steel-decarbonisation/ (accessed: 18.06.2024).
28. Chang Y., Wan F., Yao X., Wang J. et al. Influence of hydrogen production on the CO2 emissions reduction of hydrogen metallurgy transformation in iron and steel industry. Energy Reports. 2023. Vol. 9. pp. 3057–3071. DOI: 10.1016/j.egyr.2023.01.083
29. Carvalho D. Beyond electricity: is hydrogen the key to greener smelting and refining? Available at: https://www.woodmac.com/news/opinion/beyond-electricity-is-hydrogen-the-key-togreener-smelting-and-refining/ (accessed: 18.06.2024).
30. Hieminga G., Dantuma E., Stellema T. Hydrogen sparks change for the future of green steel production. Available at: https://think.ing.com/articles/hydrogen-sparks-change-for-thefuture-of-green-steel-production/ (accessed: 18.06.2024).

Language of full-text русский
Полный текст статьи Получить
Назад