Журналы →  Chernye Metally →  2025 →  №1 →  Назад

Ecology and Recycling
Название Analysis of methods for gas cleaning from nanoparticles
DOI 10.17580/chm.2025.01.13
Автор I. V. Butorina, M. V. Butorina, S. V. Ganin
Информация об авторе

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

I. V. Butorina, Dr. Eng., Prof., e-mail: butorina_irina@mail.ru

S. V. Ganin, Cand. Eng., Director of the Higher School of Physics and Technology of Materials, e-mail: ganin_sv@spbstu.ru

 

Baltic State Technical University “VOENMEKH” named after D. F. Ustinov, St. Petersburg, Russia
M. V. Butorina, Dr. Eng., Prof., e-mail: marina_butorina@inbox.ru

Реферат

The nano-sized powders help to get materials with fundamentally new properties, but working with them is associated with the formation of dust and gas flows. The flows that are released into the environment without purification cause great damage to the human health. An analysis of methods for purifying gases from nanoparticles in the range of 1-100 nm was executed. It is shown that the methods carried out in inertial, centrifugal, fabric filters and wet dust collectors are suitable for removing macroparticles from the flow. However, the particles of such a small size must undergo an enlargement procedure (coagulation) before entering the gas cleaning apparatus. Coagulation of nanoparticles is carried out by exposing the dust and gas flow to acoustic or magnetic fields, or by supplying steam to the unit. It is possible to increase the force of influence on particles in centrifugal dust collectors by increasing the angular speed of rotation of the gas flow in the unit, and in wet dust collectors (bubblers) by intensive mixing of gas and cleaning liquid. Electric precipitators used to purify gases from microdust are not applicable for nanoparticles. The design of electric traps for capturing nanoparticles is much more complex. They are designed for purifying small volumes of gas. The best dry method for purifying gas from nanoparticles is to filter them through filters made of superfine fibers in the form of nanotubes. The hydrofilters (bubblers) equipped with a dispersant of pure gas are the simplest and the most effective way to capture nanoparticles. They can be installed as a second stage of purification after microdust collectors.

Ключевые слова Nanoparticles, health effect, gas purification, methods of capture, coagulation, inertial, centrifugal, filtration, electrotraps, bubblers, nanofiber, nanotubes
Библиографический список

1. Kochkina G. V., Krushenko G. G. Methods of obtaining nanopowders. Collection of Conference Proceedings. Actual Problems of Aviation and Cosmonautics. Krasnoyarsk, 2014. pp. 55–56.
2. Velikorodnaya Yu. F. Pocheptsov A. Ya. Nanoparticles as a potential source of adverse impact on the environment. Meditsina ekstremalnykh situatsiy. 2015. No. 3(53). pp. 73–77.
3. Oberdörster G., Stone V., Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology. 2007. Vol. 1. pp. 1–25.
4. Butorina I. V., Butorina M. V. Modern methods for purification of emissions from ferrous metallurgy enterprises. Chernye Metally. 2021. No. 7. pp. 76–81.
5. Lopota A. A., Frolov V. Ya., Ivanov D. V., Yushin B. A. Development of a collector for sedimentation of nanomaterials. Nauchno-tekhnicheskie vedomosti. Nauka i obrazovanie. 2011. No. 1. pp. 151–153.
6. Butorina I. V., Fedotova E. S. Role of evaporation in the formation of smelting dust. Steel in Translation. 2016. Vol. 46. No. 6. pp. 447–452.
7. Khmelev V. N., Shalunov A. V., Nesterov V. A., Shalunova K. V. et al. Control of the process of ultrasonic coagulation of nanometer-sized dispersed particles. Polzunovskiy vestnik. 2013. No. 2. pp. 154–158.
8. Abramov E. G., Panina L. K. Modeling of flows of biosuspensions labeled with magnetically active nanoparticles in a magnetic field gradient. Vestnik SPbGU. 2011. Ser. 3. Iss. 1. pp. 57–65.
9. Ivakhnyuk G. K., Kartel N. T., Ivanov A. V., Kapitonenko Z. V. Adsorption and electrophysical methods of synthesis of nanomaterials. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo insituta. 2011. No. 12. pp. 58–59.
10. Bubenchikov M. A. Movement of xenon particles in a cyclone chamber. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2012. No. 1(17). pp. 62–67.
11. Khmelev V. N., Shalunov A. V., Nesterov V. A., Shalunova K. V. et al. Development of the design of a centrifugal trapping device for nanosized aerosols. Polzunovskiy vestnik. 2013. No. 1. pp. 156–159.
12. Weiyu Liu, Je Tao, Rue Xue, Chunlei Song et al. Continuous-flow nanoparticle trapping driven by hybrid electrokinetics in microfluidics. Electrophoresis. 2021. Vol. 42. pp. 939–949.
13. Kirsh A. A., Budyka A. K., Kirsh V. A. Filtration of aerosols by fibrous materials FP. Rossiyskiy khimicheskiy zhurnal. 2008. Vol. 52. No. 5. pp. 97–101.
14. Burakov A. E., Ivanova I. V., Burakova E. A., Tkachev A. G. et al. Application of carbon nanotubes to improve the efficiency of fibrous filters for ultrafine gas dedusting. Vestnik TGTU. 2010. Vol. 16. No. 3. pp. 647–649.
15. Makarova L. E., Kamenskikh A. P., Trushkov Yu. Yu., Karavaev D. M. Nanosized dust particles and the possibility of their removal from the air by the EKOVESTA hydrofilter in industrial scale. Vestnik PNITPU. Mashinostroenie, materialovedenie. 2017. Vol. 19. No. 1. pp. 7-24.
16. Katnov V. E., Petrova E. V., Stenin S. N., Dresvyannikov A. S., Gafarov I. G. Obtaining ultrafine SiO2 particles in a high-frequency induction discharge reactor. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2011. No. 14, pp. 220–222.

Language of full-text русский
Полный текст статьи Получить
Назад