Journals →  Chernye Metally →  2025 →  #1 →  Back

Tubemaking
ArticleName Evaluation of deformed, thermal and kinematic states and their influence on the microstructure of a stainless steel billet during three-high screw rolling
DOI 10.17580/chm.2025.01.06
ArticleAuthor M. M. Skripalenko, B. A. Romantsev, M. N. Skripalenko, V. A. Vorotnikov
ArticleAuthorData

NUST MISIS, Moscow, Russia

M. M. Skripalenko, Cand. Eng., Associate Prof., e-mail: mms@misis.ru
B. A. Romantsev, Dr. Eng., Prof., e-mail: boralr@yandex.ru
M. N. Skripalenko, Cand. Eng., Associate Prof., Scientific Project Expert, e-mail: tfsmn@yandex.ru
V. A. Vorotnikov, Leading Specialist in Technical Equipment, e-mail: vrtnkov@gmail.com

Abstract

Computer simulation of stainless steel billet three-high screw rolling was carried out at 6, 12, 18 and 24 degrees rolls feed angle. Computer simulation results show that rolls feed angle increasing makes stress-strain, thermal and kinematic condition of the billet more uniform: accumulated strain standard deviation decreases 4 times; range of mean stress values along the billet radius decreases 2,3 times; billet temperature range decreases from 134 °C to 110 °C with the rolls feed angle increasing; total velocity range along billet radius when leaving deformation zone decreases 1,3 times. Considering accumulated strain as a measure of shear strain, it was established how rolls feed angle increasing affects value and uniformity of distribution of shear strain throughout billet volume: rolls feed angle increasing decreases shear strain and more uniform distribution of shear strain through billet volume. Using estimation of mean stress along billet radius on the stationary stage, it was detected that possible reason for grain elongation in the central area of the billet is predominance of tensile stresses in this area. It is shown how changing of accumulated strain, temperature and total velocity can form fine grain surface, transient and coarse grain central areas dimensions in the billet. Computer simulation results showed that total velocity of inner layers of the billet while rolling with all selected rolls feed angle values increases whereas total velocity of outer layers – decreases.

keywords Three-high screw rolling, feed angle of rolls, accumulated strain, temperature, microstructure formation, total velocity, mean stress
References

1. Nikulin A. N. Screw rolling. Stresses and deformations. Moscow : Metallurgizdat, 2015. 380 p.
2. Teterin P. K. Theory of transverse and screw rolling. Moscow : Metallurgiya, 1983. 270 p.
3. Tran Ba Huy. Development and research of the screw rolling process in a four-high mill based on physical and computer modeling: Dissertation … of Candidate of Engineering Sciences. Moscow, 2019. 101 p.
4. Andreev V. A., Rogachev S. O., Romantsev B. A., Skripalenko M. M. et al. Effect of screw rolling on the structure and mechanical properties of titanium alloys. Deformatsiya i razrushenie materialov. 2023. No. 11. pp. 22–32.
5. Potapov I. N., Polukhin P. I. Screw rolling technology. Moscow : Metallurgiya, 1990. 344 p.
6. Galkin S. P. Theory and technology of stationary screw rolling of billets and rods of low-plasticity steels and alloys: Dissertation … of Doctor of Engineering Sciences. Moscow, 1998. 401 p.
7. Galkin S. P., Stebunov S. A., Aleshchenko A. S., Vlasov A. V. et al. Modeling and experimental evaluation of conditions of circumferential fracture during hot radial-shear rolling. Metallurg. 2020. No. 3. pp. 64–70.
8. Galkin S. P., Romantsev B. A., Kharitonov E. A. Realization of innovation potential of the universal method of radial-shift rolling. Chernye Metally. 2015. No. 1. pp. 23–28.
9. Galkin S. P., Aleshchenko A. S., Romantsev B. A., Gamin Yu. V. et al. Effect of preliminary deformation of continuously cast billets by radial-shear rolling on the structure and properties of hot-rolled pipes made of chromium-containing steels. Metallurg. 2021. No. 2. pp. 54–61.
10. Galkin S.P. Screw rolling method. Patent RF, No. 2293619. Applied: 04.04.2006. Published: 20.02.2007.
11. Skripalenko M. M., Karpov B. V., Rogachev S. O., Kaputkina L. M. et al. Simulation of the kinematic condition of radial shear rolling and estimation of its influence on a titanium billet microstructure. Materials. 2022. Vol. 15. 7980.
12. Nguyen Xuan Ziep. Development and research of technological modes of radial-shear rolling of rods with a diameter of less than 18 mm of aluminum calcium-containing alloys and 01570 alloy with a high level of mechanical properties. Thesis of inauguration: Dissertation … of Candidate of Engineering Sciences. Moscow, 2023. 24 p.
13. Potapov I. N., Polukhin P. I. New technology of screw rolling. Moscow : Metallurgiya, 1975. 344 p.
14. Romantsev B. A., Skripalenko M. M., Skripalenko M. N., Vorotnikov V. A. Evaluation of the deformed, kinematic and thermal state of a steel billet during two-roll screw rolling and their influence on the microstructure formation. Machines, units and processes. Design, creation and modernization: Proceedings of the international scientific and practical conference. St. Petersburg : NITs MS, 2024. No. 7. pp. 12–14.
15. Skripalenko M. M., Romantsev B. A., Galkin S. P., Kaputkina L. M. et al. Forming features at screw rolling of austenitic stainless-steel billets. Journal of Materials Engineering and Performance. 2020. Vol. 29. pp. 3889–3894.
16. QForm – Screw Rolling. Available at: https://qform3d.ru/products/cross-rolling (accessed: 26.03.2024).
17. Vlasov A. V., Stebunov S. A., Evsyukov S. A., Biba N. V. et al. Finite element modeling of technological processes of forging and bulk forming. Moscow : Izdatelstvo MGTU imeni N. E. Baumana, 2019. 383 p.
18. Bajor T., Kulakowska A., Dyja H. Analysis of the rolling process of alloy 6005 in a three-high skew rolling mill. Materials. 2020. Vol. 13. 1114.
19. Akopyan T. K., Gamin Y. V., Galkin S. P., Prosviryakov A. S. et al. Radial-shear rolling of highstrength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Materials Science and Engineering: A. 2020. Vol. 786. 139424.
20. Ya Li Wang, Molotnikov A., Diez M., Lapovok R. et al. Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations. Materials Science and Engineering: A. 2015. Vol. 639. pp. 165–172.
21. Gamin Yu. V., Koshmin A. N., Kin T. Yu., Aleshchenko A. S. Comparative analysis of stress-strain state of bars from aluminum alloys A2024 and A7075 processed by RSR based on FEM modeling. Materials Today: Proceedings. 2021. Vol. 46. pp. 8138–8142.
22. Alyushin Yu. A., Elenev S. A., Kuznetsov S. A., Kulik N. Yu. Energy model of reversible and irreversible deformations : tutorial. Moscow : Mashinostroenie, 1995. 128 p.
23. Kolmogorov V. L. Mechanics of metal forming. Moscow : Metallurgiya, 1986. 688 p.
24. Lezhnev S. N., Nayzabekov A. B., Panin E. A., Volokitina I. E. et al. Obtaining a gradient microstructure in stainless austenitic steel during radial-shear rolling. Metallurg. 2020. No. 11. pp. 46–54.
25. Kolobov Yu. R., Golosova O. A., Manokhin S. S. Regularities of formation and degradation of the microstructure and properties of new ultrafine-grained low-modulus Ti–Nb–Mo–Zr alloys. Russian Journal of Non-Ferrous Metals. 2017. Vol. 59. pp. 393–402.
26. Lopatin N. Effect of hot rolling by screw mill on microstructure of a Ti-6Al-4V titanium alloy. International Journal of Material Forming. 2012. Vol. 6. No. 4. pp. 459–465.
27. Mogucheva A., Lopatin N., Belyakov A., Kaibyshev R. Grain refinement in austenitic stainless steel during warm screw rolling. Materials Science Forum. 2012. Vol. 715-716. pp. 889–894.
28. Derevyagina L. S., Gordienko A. I., Kashiro P. O. The influence of regimes of thermomechanical treatment on the structural-phase state, mechanical properties, and fracture toughness of low-alloy steel API 5L grade X52. Russian Physics Journal. 2019. Vol. 61. pp. 1971–1977.
29. Arbuz A., Kawalek A., Ozhmegov K., Panin E. et al. Obtaining an equiaxed ultrafine-grained state of the longlength bulk zirconium alloy bars by Extralarge shear deformations with a vortex metal flow. Materials. 2023. Vol. 16. 1062.
30. Surikova N. S., Vlasov I. V., Derevyagina L. S., Gordienko A. I. et al. Influence of cross-screw rolling modes on mechanical properties and fracture toughness of Pipe Steel. Izvestiya. Ferrous Metallurgy. 2021. Vol. 64. pp. 28–37.

Language of full-text russian
Full content Buy
Back