Journals →  Горный журнал →  2024 →  #12 →  Back

ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ
ArticleName Повышение водоустойчивости эмульсий на основе нитрата аммония
DOI 10.17580/gzh.2024.12.12
ArticleAuthor Булушев Д. А., Султанов Е. В., Акинин Н. И.
ArticleAuthorData

Российский химико-технологический университет им. Д. И. Менделеева, Москва, Россия

Булушев Д. А., аспирант, 191706@muctr.ru
Султанов Е. В., аспирант
Акинин Н. И., зав. кафедрой, д-р техн. наук, проф.

Abstract

Рассмотрены аспекты экологической и промышленной безопасности использования промышленных эмульсионных взрывчатых веществ (ПЭВВ) на основе нитрата аммония. Из-за ограниченной водоустойчивости эмульсий на основе нитрата аммония в условиях обводненного заряжания при длительном контакте с водой происходит миграция ионов из заряда ПЭВВ в сопутствующие скважинные и грунтовые воды. При этом содержание загрязняющих веществ в природных источниках и водоемах, находящихся рядом с местами добычи полезных ископаемых, могут значительно превышать допустимую норму по концентрации нитритного, нитратного и аммонийного азота. Смоделирован контакт полупродукта безоболочного промышленного эмульсионного взрывчатого вещества – эмульсионной матрицы – с дистиллированной водой, с последующим измерением концентрации нитрат-иона в водных пробах. Предложен способ снижения интенсивности миграции нитрата путем выбора типа и содержания эмульгатора, применяемого для стабилизации энергоемкой эмульсии.

keywords Эмульсионные взрывчатые вещества, загрязнение вод, нитраты, скважинные воды, поверхностные воды, водоустойчивость, эмульгатор, количественное определение, ионная хроматография, потенциометрия
References

1. Khokhryakov A. V., Studenok A. G., Studenok G. A. Investigation of formation processes of drainage waters chemical contamination with nitrogen compounds on the example of major mining enterprise. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2016. No. 4(44). pp. 35–37.
2. Lukyanov V. G., Komashchenko V. I., Shmurygin V. A. Blasting : Textbook. 2nd ed. Moscow : Yurayt, 2022. 402 p.
3. Karlsson T., Kauppila T. Explosives-originated nitrogen emissions from dimension stone quarrying in Varpaisjärvi, Finland. Environmental Earth Sciences. 2016. Vol. 75, Iss. 9. ID 834.
4. Jermakka J., Wendling L., Sohlberg E., Heinonen H., Vikman M. Potential technologies for the removal and recovery of nitrogen compounds from mine and quarry waters in subarctic conditions. Critical Reviews in Environmental Science and Technology. 2015. Vol. 45, Iss. 7. pp. 703–748.
5. Holopainen I. J., Holopainen A.-L., Hämäläinen H., Rahkola-Sorsa M., Tkatcheva V. et al. Effects of mining industry waste waters on a shallow lake ecosystem in Karelia, northwest Russia. Hydrobiologia. 2003. Vol. 506. pp. 111–119.
6. Solnyshkova M. A., Pashkevich M. A. Monitoring and mitigation of negative impact on surface waters from blasting. MIAB. 2019. Special issue 6. Industrial safety of enterprises of mineral resource complex in XXI century-1. pp. 352–359.
7. Hu J., Chen X., Chen Y., Li C., Ren M. et al. Nitrate sources and transformations in surface water of a mining area due to intensive mining activities: Emphasis on effects on distinct subsidence waters. Journal of Environmental Management. 2021. Vol. 298. ID 113451.
8. Daou I. E., Harouna S., Hassan A. M., Boukari H., Oauba H. C. Y. Monitoring of blasting operations techniques and assessment of their impacts on groundwater in the context of underground mining: Case of ROXGOLD SANU, Burkina Faso. International Journal of Environment and Climate Change. 2022. Vol. 12, Iss. 12. pp. 491–505.
9. Abdou H., Ibrahim A., Issa H. Teneurs en nitrates dans les aquiferes discontinus du socle du Damagaram Mounio (Est du Niger). International Journal of Advanced Research. 2022. Vol. 10, Iss. 12. pp. 1031–1038.
10. Souley H., Ibrahim E. D., Abdourazakou M. H., Moussa D. B., Ismaël S. Hydrological investigation and characterization of Sokouraba Watershed, Burkina Faso. Current Journal of Applied Science and Technology. 2022. Vol. 41, Iss. 37. pp. 42–56.
11. Obgolts A. A., Lapina O. P., Grishin A. N., Muchnik S. V. Safe and efficient use of grammonite P21 in watered sites in open pit mines. Bezopasnost truda v promyshlennosti. 2005. No. 6. pp. 9–13.
12. Mensinga T. T., Speijers G. J., Meulenbelt J. Health implications of exposure to environmental nitrogenous compounds. Toxicological Reviews. 2003. Vol. 22, Iss.1. pp. 41–51.
13. Kuprin R. V., Selin I. Yu., Kovalenko I. L. Development, synthesis and production of emulsifiers for invert emulsion grades RH. Gornaya Promyshlennost. 2020. No. 4. pp. 81–82.
14. Kolganov E. V., Sosnin V. A. Industrial emulsion explosives. Dzerzhinsk : Izdatelstvo GosNII “Kristall”, 2009. Book 2. Technology and Safety. 336 p.
15. Sivenkov V. I., Ilyukhin S. V., Maslov I. Yu. Emulsion Explosives and Nonelectric Initiation Systems. Moscow : Shchit-M, 2013. 320 p.
16. Tyupin V. N. Geomechanical behavior of jointed rock mass in the largescale blast impact zone. Eurasian Mining. 2020. No. 2. pp. 11–14.
17. Bulushev D. A., Sultanov E. V., Smirnov S. P. Quantification of nitrate ions in water solutions in contact with ammonium nitrate-based emulsion. Proceedings of III International Conference of Young Scientist on Problems of Technosphere Safety and in Honor of Professor B. N. Kondrikov’s 85th Anniversary. Moscow : RKhTU im. D. I. Mendeleeva, 2018. pp. 67–71.
18. Sultanov E. V., Smirnov S. P. Methods of assessment of migration of nitrate ion into the environment. Proceedings of III International Conference of Young Scientist on Problems of Technosphere Safety. Moscow : RKhTU im. D. I. Mendeleeva, 2020. pp. 94–98.

Language of full-text russian
Full content Buy
Back