Journals →  Eurasian mining →  2024 →  #2 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Experimental investigation and optimization of the penetration rate of large-scale DTH drilling in copper mines
DOI 10.17580/em.2024.02.14
ArticleAuthor Kadkhodaei M. H., Bagherpour R., Nadri A.
ArticleAuthorData

Isfahan University of Technology, Department of Mining Engineering, Isfahan, Iran

Kadkhodaei M. H., Ph.D. Student
Bagherpour R., Professor, bagherpour@iut.ac.ir

 

Anarak Mine Manager, Isfahan, Iran
Nadri A., MSc of Mining Engineering

Abstract

Optimizing the conditions of the drilling operation to achieve the maximum penetration rate (ROP) is essential as the initial step in mine-to-mill optimization. This study mainly focuses on optimizing the operational-scale drilling operation conditions of the drill wagon. For this purpose, two operational parameters (feed rate pressure and air flushing pressure) were identified as influential factors affecting the ROP. Various operational conditions were subsequently established using the Taguchi algorithm. Based on these conditions, drilling operations were conducted at the Anarak copper mine in Isfahan, Iran. Finally, the optimal operating conditions for different mine zones were developed. The results of the optimization showed that with the increase of copper grade and the decrease of rock strength, air flushing pressure has the most significant impact on the drilling ROP. Subsequently, a model was developed using three intelligent methods: Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM). These models aimed to predict the ROP within the Python environment, utilizing a database comprising 170 drilling operations conducted at the Sarcheshmeh copper mine in Kerman, Iran. This database includes parameters that affect drilling ROP, including feed rate pressure, air flushing pressure, and geological strength index. To evaluate the performance of the developed models, three performance evaluation criteria (such as variance account for, normalized root mean square error, and coefficient of determination) were used based on the training database. The results showed that the RF model has a higher performance than the SVM and ANN model. Furthermore, the RF model was utilized for predicting the ROP in drilling operations at the Anarak copper mine. After conducting drilling operations in this mine and comparing the results, it was found that the RF model predicts the ROP with an accuracy of 83.8%. Therefore, the RF model can be confidently utilized in drilling projects with low uncertainty.

keywords Drilling, penetration rate, taguchi, optimization, machine learning
References

1. Rafezi H, Hassani F. Drilling signals analysis for tricone bit condition monitoring. International Journal of Mining Science and Technology. 2021. Vol. 31, Iss. 2. pp. 187–195.
2. Vogt D. A review of rock cutting for underground mining: past, present, and future. Journal of the Southern African Institute of Mining and Metallurgy. 2016. Vol. 116. pp. 1011–1026.
3. Wang J., Gu D., Yu Z., Tan C., Zhou L. A framework for 3D model reconstruction in reverse engineering. Computers & Industrial Engineering. 2012. Vol. 63, Iss. 4. 1189–1200.
4. Bilgin A., Yalcin E., Kutbay H., Kilinc M. Nutrient Concentrations and Biomass in Lake Vegetation and Nutrient Limitation in Lakes of Northern Black Sea Region of Turkey. Ekologia (Bratislava). 2003. Vol. 22, Iss. 3. pp. 257–268.
5. Moein M. J. A, Shaabani E., Rezaeian M. Experimental evaluation of hardness models by drillability tests for carbonate rocks. Journal of Petroleum Science and Engineering. 2014. Vol. 113. pp. 104–108.
6. Paone J. Drillability studies: impregnated diamond bits. Michigan : University of Michigan Library. 1966. Vol. 6776. 24 p.
7. Howarth D. F., Adamson W. R., Berndt J. R. Correlation of model tunnel boring and drilling machine performances with rock properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1986. Vol. 23. pp. 171–175.
8. Thakur M., Choudhary B. S., Seervi V. An Investigation into the Effect of Rock Properties on Drill Bit Life. Journal of The Institution of Engineers (India): Series D. 2023. DOI: 10.1007/S40033-023-00542-2
9. Hoseinie S. H, Ghorbani S., Ghodrat B. Selection of suitable drilling method in Razgah nepheline syenite mine, a systematic approach. Eurasian Mining. 2020. No. 1. pp. 56–60.
10. Shigin A. O, Gilyov A. V., Shigina A. A. Automation of rotary blasthole drilling in open pit mines. Gornyi Zhurnal. 2017. No. 2. pp. 82–86.
11. Kahraman S. Correlation of TBM and drilling machine performances with rock brittleness. Engineering Geology. 2002. Vol. 65, Iss. 4. pp. 269–283.
12. Rajesh Kumar B., Vardhan H., Govindaraj M., Vijay G. S. Regression analysis and ANN models to predict rock properties from sound levels produced during drilling. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 58. pp. 61–72.
13. Kumar B. R, Vardhan H., Govindaraj M. Sound level produced during rock drilling vis-à-vis rock properties. Engineering Geology. 2011. Vol. 123, Iss. 4. pp. 333–337.
14. Bezminabadi S. N, Ramezanzadeh A., Esmaeil Jalali S. M, Tokhmechi B., Roustaei A. Effect of rock properties on ROP modeling using statistical and intelligent methods: A case study of an oil well in southwest of Iran. Archives of Mining Sciences. 2017. Vol. 62: pp. 131–144.
15. Kahraman S., Bilgin N., Feridunoglu C. Dominant rock properties affecting the penetration rate of percussive drills. International Journal of Rock Mechanics and Mining Sciences. 2003. Vol. 40, Iss. 5. pp. 711–723.
16. Abu Bakar M. Z., Butt I. A., Majeed Y. Penetration Rate and Specific Energy Prediction of Rotary–Percussive Drills Using Drill Cuttings and Engineering Properties of Selected Rock Units. Journal of Mining Science. 2018. Vol. 54. pp. 270–284.
17. Basarir H., Tutluoglu L., Karpuz C. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions. Engineering Geology. 2014. Vol. 173. pp. 1–9.
18. Delavar M. R, Ramezanzadeh A., Tokhmechi B. An investigation into the effect of geomechanical properties of reservoir rock on drilling parameters — a case study. Arabian Journal of Geosciences. 2021. Vol. 14. pp. 1–25.
19. Karpuz C., Pasamehmetoglu A. G., Dincer T., Muftuoglu Y. Drillability studies on the rotary blasthole drilling of lignite overburden series. International Journal of Mining Reclamation and Environment. 1990. Vol. 4. pp. 89–93.
20. Paone J. Drillability studies: statistical regression analysis of diamond drilling. Michigan : University of Michigan Library, 1966. 40 p.

21. Akün M. E., Karpuz C. Drillability studies of surface-set diamond drilling in Zonguldak region sandstones from Turkey. International Journal of Rock Mechanics and Mining Sciences. 2005. Vol. 42, Iss. 3, pp. 473–479.
22. Ersoy A., Waller M. Prediction of drill-bit performance using multivariable linear regression analysis. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1995. Vol. 6.
23. Yinchol H., Kumdol P., Jianming P. et al. Analysis of effects of operating parameters on rate of penetration in drilling process with air down-the hole hammer. Global Geology. 2021. Vol. 24. pp. 64–70.
24. Eren T., Ozbayoglu M. E. Real Time Optimization of Drilling Parameters During Drilling Operations. SPE Oil and Gas India Conference and Exhibition. 2010. DOI: 10.2118/129126-MS
25. Soares C., Gray K. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models. Journal of Petroleum Science and Engineering. 2019. Vol. 172. 934–959.
26. Riazi M., Mehrjoo H., Nakhaei R. et al. Modelling rate of penetration in drilling operations using RBF, MLP, LSSVM, and DT models. Scientific Reports. 2022. Vol. 12. ID 11650.
27. Bourgoyne A. T, Young F. S. A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection. Society of Petroleum Engineers Journal. 1974. Vol. 14, Iss. 4. pp. 371–384.
28. Hegde C., Daigle H., Millwater H., Gray K. Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models. Journal of Petroleum Science and Engineering. 2017. Vol. 159. pp. 295–306.
29. Hustrulid W. A., Fairhurst C. A theoretical and experimental study of the percussive drilling of rock part III—experimental verification of the mathematical theory. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1972. Vol. 9, Iss. 3. pp. 417–429.
30. Kahraman S. Rotary and percussive drilling prediction using regression analysis. International Journal of Rock Mechanics and Mining Sciences. 1999. Vol. 36. pp. 981–989.
31. Karna S., Sahai R. An overview on Taguchi method. International Journal of Engineering and Mathematical Sciences. 2012. Vol. 1. pp. 1–7.
32. Vellaiyan S., Amirthagadeswaran K., Sivasamy D. Taguchi-Grey Relation Based Multi-response Optimization of Diesel Engine Operating Parameters with Water-in Diesel Emulsion Fuel. International Journal of Technology. 2018. Vol. 9, No. 1. 68–77.
33. Sumesh A., Shibu M. Optimization of drilling parameters for minimum surface roughness using Taguchi method. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). 2016. pp. 12–20.
34. Kumar R., Chohan J. S., Singh S. et al. Implementation of Taguchi and Genetic Algorithm Techniques for Prediction of Optimal Part Dimensions for Polymeric Biocomposites in Fused Deposition Modeling. International Journal of Biomaterials. 2022. DOI: 10.1155/2022/4541450
35. Pradhan B., Jebur M. N., Shafri H. Z. M., Tehrany M. S. Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing. 2016. Vol. 54, Iss. 3. pp. 1610–1622.
36. Molaei N., Razavi H., Chehreh Chelgani S. Designing different beneficiation techniques by Taguchi method for upgrading Mehdi-Abad white barite ore. Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39, Iss. 3. pp. 198–201.
37. Baradeswaran A., Elayaperumal A., Franklin Issac R. A Statistical Analysis of Optimization of Wear Behaviour of Al-Al2O3 Composites Using Taguchi Technique. Procedia Engineering. 2013. Vol. 64. pp. 973–982.
38. Suhane A., Sarviya R. M., Siddiqui A. R., Khaira H. K. Optimization ofWear Performance of Castor Oil based Lubricant using Taguchi Technique. Materials Today: Proceedings. 2017. Vol. 4. pp. 2095–2104.
39. Kang H., Park J. Y., Cho J. W. et al. Optimal button arrangement of a percussion drill bit and its operating condition for improving drilling efficiency. Journal of Mechanical Engineering Science. 2017. Vol. 232, Iss. 16. pp. 2887–2898.
40. Karpov V. N., Petreev A. M. Determination of Efficient Rotary Percussive Drilling Techniques for Strong Rocks. Journal of Mining Science. 2021. Vol. 57. pp. 447–458.
41. Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 16. pp. 445–463.
42. Hussian S., Mohammad N., Ur Rehman Z. et al. Review of the geological strength index (GSI) as an empirical classification and rock mass property estimation tool: Origination, modifications, applications, and limitations. Advances in Civil Engineering. 2020. DOI: 10.1155/2020/6471837
43. Aboutaleb S., Behnia M., Bagherpour R., Bluekian B. Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bulletin of Engineering Geology and the Environment. 2018. Vol. 77. pp. 1717–1728.
44. Cristianini N., Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge : Cambridge University Press, 2000. 189 p.
45. Breiman L. Random forests. Machine Learning. 2001. Vol. 45. pp. 5–32.
46. Biau G. Analysis of a random forests model. The Journal of Machine Learning Research. 2012. Vol. 13. pp. 1063–1095.
47. Kohestani V. R., Bazarganlari M. R., Asgari Marnani J. Prediction of maximum surface settlement caused by earth pressure balance shield tunneling using random forest. Journal of AI and Data Mining. 2017. Vol. 5. pp. 127–135.
48. Tao H., Wang J., Zhang L. Prediction of hard rock TBM penetration rate using random forests. The 27th Chinese Control and Decision Conference (2015 CCDC). 2015. pp. 3716–3720. DOI: 10.1109/CCDC.2015.7162572
49. Svetnik V., Liaw A., Tong C. et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences. 2003. Vol. 43, No. 6. pp. 1947–1958.
50. McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics. 1943. Vol. 5. pp. 115–133.
51. Ghasemi E., Amini H., Ataei M., Khalokakaei R. Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences. 2014. Vol. 7. pp. 193–202.
52. Engelbrecht A. Computational intelligence: an introduction. England : John Wiley & Sons, 2007. 597 p.
53. Saghatforoush A., Monjezi M., Faradonbeh S. R., Armaghani J. D. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Engineering with Computers. 2016. Vol. 32. pp. 255–266.
54. Momeni E., Armaghani J. D, Hajihassani M., Mohd Amin M. F. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement. 2015. Vol. 60. pp. 50–63.
55. Monjezi M., Mehrdanesh A., Malek A., Khandelwal M. Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Computing and Applications. 2013. Vol. 23. pp. 349–356.
56. Lee D. H., Kim Y. T., Lee S. R. Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions. Remote Sensing. 2020. Vol. 12, Iss. 7. ID 1194.
57. Jafarshirzad P., Ghasemi E., Yagiz S., Kadkhodaei M. H. Evaluation of Hard Rock Tunnel Boring Machine (TBM) Performance Using Stochastic Modeling. Geotechnical and Geological Engineering. 2023. Vol. 41. pp. 3513–3529.
58. Ghorbani S., Hoseinie S. H., Ghasemi E., Sherizadeh T. Effect of quantitative textural specifications on Vickers hardness of limestones. Bulletin of Engineering Geology and the Environment. 2023. Vol. 82, No. 32. DOI: 10.1007/S10064-022-03049-4

Full content Experimental investigation and optimization of the penetration rate of large-scale DTH drilling in copper mines
Back