Journals →  Non-ferrous Мetals →  2024 →  #2 →  Back

METAL PROCESSING
ArticleName Production and plugging of TiNi SMA tube shell on a screw rolling mill
DOI 10.17580/nfm.2024.02.15
ArticleAuthor Karelin R. D., Komarov V. S., Cherkasov V. V., Andreev V. A.
ArticleAuthorData

A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia1 ; National University of Science and Technology “MISIS”, Moscow, Russia2

R. D. Karelin*, Researcher at the Laboratory of Plastic Deformation of Metalic Materials1, Senior Researcher at the Laboratory of Shape Memory Alloys2, e-mail: rdkarelin@gmail.com
V. S. Komarov, Researcher at the Laboratory of Plastic Deformation of Metalic Materials1, Leading Researcher at the Laboratory of Shape Memory Alloys2
V. V. Cherkasov, Research Engineer at the Laboratory of Plastic Deformation of Metalic Materials1, Scientific Project Engineer Researcher at the Laboratory of Shape Memory Alloys2

 

A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
V. A. Andreev, Leading Researcher at the Laboratory of Plastic Deformation of Metalic Materials

 

*Correspondence author.

Abstract

In the present article the process of a tube shell producing from TiNi shape memory alloy rods and subsequent plugging are described. The deformation-temperature conditions of a shell plugging from an outer diameter of 38 to 26 mm and a tube schedule form 10 mm to 3.3 mm on a floating mandrel is considered in detail. The design features of the rolling mill and the tools used are analyzed. TiNi SMA seamless tubes with various outer diameters and pipes schedule were produced. During the production cycle mechanical and functional properties of SMA pipes are stable and are comparable with properties of initial SMA rods. Suggested technological scheme of TiNi seamless tubes productionn is promising in terms of the low metal consumption, simplicity of applied technological processes and tubes price reduction.

The reported study was funded by the Russian Science Foundation (project no.23-19-00729, https://rscf.ru/project/23-19-00729/).

keywords Shape memory alloy, TiNi, tube, plugging, screw rolling, shell
References

1. Strittmatter J., Gümpel P., Hiefer M. Intelligent Materials in Modern Production–Current Trends for Thermal Shape Memory Alloys. Procedia Manufacturing. 2009. Vol. 30. pp. 347–356.
2. Mehta K., Gupta K., Fabrication and Processing of Shape Memory Alloys. Springer Cham, 2019. VIII + 84 p.
3. Sadashiva M., Sheikh M. Y., Khan N., Kurbet R., Deve Gowda T. M. A Review on Application of Shape Memory Alloys. The International Journal of Recent Technology and Engineering. 2021. Vol. 9, Iss. 6. pp. 111–120.
4. Chaudhari R., Vora J. J., Parikh D. M. A Review on Applications of Nitinol Shape Memory Alloy. Recent Advances in Mechanical Infrastructure: Proceedings of ICRAM 2020. 2021. pp. 123–132.
5. Zareie S., Issa A. S., Seethaler R. J., Zabihollah A. Recent Advances in the Applications of Shape Memory Alloys in Civil Infrastructures: a Review. Structures. 2020. Vol. 27. pp. 1535–1550.
6. Chaudhari R., Vora J. J., Parikh D. M. A Review on Applications of Nitinol Shape Memory Alloy. Recent Advances in Mechanical Infrastructure: Proceedings of ICRAM 2020. 2021. pp. 123–132.
7. Jani J. M., Leary M., Subic A., Gibson M. A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Materials & Design (1980–2015). 2014. Vol. 56. pp. 1078–1113.

8. Kim M. S., Heo J. K., Rodrigue H., Lee H. T., Pané S., Han M. W., Ahn S. H. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Advanced Materials. 2023. Vol. 35, Iss. 33. 2208517.
9. Molod M. A., Spyridis P., Barthold F. J. Applications of Shape Memory Alloys in Structural Engineering with a Focus on Concrete Construction–a Comprehensive Review. Construction and Building Materials. 2022. Vol. 337. 127565.
10. Nair V. S., Nachimuthu R. The Role of NiTi Shape Memory Alloys in Quality of Life Improvement Through Medical Advancements: a Comprehensive Review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2022. Vol. 236, Iss. 7. pp. 923–950.
11. Holman H., Kavarana M. N., Rajab T. K. Smart Materials in Cardiovascular Implants: Shape Memory Alloys and Shape Memory Polymers. Artificial Organs. 2021. Vol. 45, Iss. 5. pp. 454–463.
12. Hayrettin C., Karakoc O., Karaman I., Mabe J. H., Santamarta R., Pons J. Two Way Shape Memory Effect in NiTiHf High Temperature Shape Memory Alloy Tubes. Acta Materialia. 2019. Vol. 163. pp. 1–13.
13. Khmelevskaya I. Y., Karelin R. D., Prokoshkin S. D., Isaenkova M. G., Perlovich Y. A., Fesenko V. A., Zaripova M. M. Features of Nanostructure and Functional Properties Formation in Ti – Ni Shape Memory Alloys Subjected to Quasi-Continuous Equal Channel Angular Pressing. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 503. 012024.
14. Karelin R., Komarov V., Khmelevskaya I., Andreev V., Yusupov V., Prokoshkin S. Structure and Properties of TiNi Shape Memory Alloy After Low-Temperature ECAP in Shells. Materials Science and Engineering: A. 2023. Vol. 872. 144960.
15. Komarov V., Karelin R., Cherkasov V., Yusupov V., Korpala G., Kawalla R., Prokoshkin S. Effect of Severe Torsion Deformation on Structure and Properties of Titanium–Nickel Shape Memory Alloy. Metals. 2023. Vol. 13, Iss. 6. 1099.
16. Yoshida K., Watanabe M., Ishikawa H. Drawing of Ni – Ti Shape-Memory-AlloyFine Tubes Used in Medical Tests. Journal of Materials Processing Technology. 2001. Vol. 118, Iss. 1-3. pp. 251–255.
17. Chen W., Wang H., Zhang L., Tang X. Development of Hot Drawing Process for Nitinol Tube. International Journal of Modern Physics B. 2009. Vol. 23, Iss. 06N07. pp. 1968–1974.
18. Gorgul’ S. I., Medvedev M. I., Bespalova N. A., Sobko-Nesteruk O. E., Tretyak N. G., Chaika N. V. Manufacturing Technology for Titanium Tubes from Billets Prepared by Electron-Beam Remelting. Metallurgist. 2013. Vol. 57, Iss. 7. pp. 748–751.
19. Adler P., Frei R., Kimiecik M., Briant P., James B., Liu C. Effects of Tube Processing on the Fatigue Life of Nitinol. Shape Memory and Superelasticity. 2018. Vol. 4. pp. 197–217.
20. Kaya E., Kaya I. AReview on Machining of NiTi Shape Memory Alloys: The Process and Post Process Perspective. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 100, Iss. 5. pp. 2045–2087.
21. Frotscher M., Schreiber F., Neelakantan L., Gries T., Eggeler G. Processing and Characterization of Braided NiTi Microstents for Medical Applications. Materialwissenschaft und Werkstofftechnik. 2011. Vol. 42, Iss. 11. pp. 1002–1012.
22. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot Radial Shear Rolling and Rotary Forging of Metastable Beta Ti – 18Zr – 14Nb (at.%) Alloy for Bone Implants: Microstructure, Texture and Functional Properties. Journal of Alloys and Compounds. 2019. Vol. 800. pp. 320–326.
23. Morakabati M., Aboutalebi M., Kheirandish S., Taheri A. K., Abbasi S. M. High temperature deformation and processing map of a NiTi intermetallic alloy. Intermetallics. 2011. Vol. 19, Iss. 10. pp. 1399–1404.
24. Tao C., Huang H., Zhou G., Zheng B., Zuo X., Chen L., Yuan X. Anomalous Hot Deformation Behavior and Microstructure Evolution of As-Cast Martensitic NiTi Alloy During Hot Compression. Journal of Materials Science. 2023. Vol. 58, Iss. 17. pp. 7477–7492.
25. Komarov V., Karelin R., Khmelevskaya I., Yusupov V., Gunderov D. Effect of Post-Deformation Annealing on Structure and Properties of Nickel-Enriched Ti – Ni Shape Memory Alloy Deformed in Various Initially Deformation-Induced Structure States. Crystals. 2022. Vol. 12, Iss. 4. 506.

Full content Production and plugging of TiNi SMA tube shell on a screw rolling mill
Back