Journals →  Non-ferrous Мetals →  2024 →  #2 →  Back

MATERIALS SCIENCE
ArticleName Study of influence of additive wire-arc manufacturing modes on microstructure of AA7075 alloy
DOI 10.17580/nfm.2024.02.13
ArticleAuthor Panchenko I. A., Bessonov D. A., Konovalov S. V., Labunsky D. N.
ArticleAuthorData

Siberian State Industrial University, Novokuznetsk, Russia

I. A. Panchenko, Candidate of Technical Sciences, Head of the Laboratory of Electron Microscopy and Image Processing, e-mail: i.r.i.ss@yandex.ru
D. A. Bessonov, Candidate of Technical Sciences, Senior Researcher, e-mail: dabess@yandex.ru
S. V. Konovalov, Professor, Doctor of Technical Sciences, Vice-Rector for Research and Innovation, e-mail: konovalov@sibsiu.ru
D. N. Labunsky, Post-Graduate Student, e-mail: info@kana-t.ru

Abstract

The article discusses the wide application of aluminum alloys in various industries, as well as the necessity to increase their strength to meet the requirements of modern technologies. An important point is to investigate the evolution of nanoscale precipitates in AA7075 alloy, in order to improve the mechanical properties of the material. Manufacturing of aluminum alloy parts by additive method allows you to achieve a high level of productivity and, if necessary, to exceed mechanical standards for these materials. Particular attention is paid to structural phase state studies, which are necessary for the development of new technologies based on additive manufacturing, such as surface cladding of aluminum alloys. The study showed that the surface cladding mode (Ar flow rate ≈ 10 l/min, surface cladding speed 100 mm/min, current — 70–80 A, voltage — 15.8 V, wire feed speed — 4 m/min) provides the best results in terms of quality and stability of the cladding process. The manufactured blanks had a dense structure with no visible cracks and the porosity percentage was low. This indicates to the possibility of using this mode for the production of highquality cladding materials. The MIG welding process using constant optimal technological parameters allows to obtain aluminum alloy AA7075 with desired microstructural properties by additive manufacturing method. Strengthening phases in the alloy help prevent crack growth during mechanical testing, and the morphology of equiaxed grains may contribute to uniform stress distribution and increase the strength of the material. It is important to note that large columnar grains in the fusion zones can affect the mechanical properties of the material and additional studies may be required to determine their effect on the overall strength of the alloy.

The study was funded by the Russian Science Foundation grant No. 22-79-10245, https://rscf.ru/project/22-79- 10245/.

keywords Aluminum alloys, properties, additive technologies, materials, surface cladding, structure, mechanical tests, strengthening phases
References

1. Jha A. K., Sreekumar K. Metallurgical Studies on Cracked Al – 5.5 Zn – 2.5 Mg – 1.5 Cu Aluminum Alloy Injector Disc of Turbine Rotor. Journal of Failure Analysis and Prevention. 2008. Vol. 8. pp. 327–332.
2. Kumar P. V., Reddy G. M., Rao K. S. Microstructure, Mechanical and Corrosion Behavior of High Strength AA7075 Aluminium Alloy Friction Stir Welds – Effect of Post Weld Heat Treatment. Defence Technology. 2015. Vol. 11, Iss. 4. pp. 362–369.
3. Isadare A. D., Aremo B., Adeoye M. O., Olawale O. J., Shittu M. D. Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy. Materials Research. 2012. Vol. 16, Iss. 1. pp. 190–194.
4. Mahan H. M., Konovalov S. V., Panchenko I., Al-Obaidi M. A. The Effects of Titanium Dioxide (TiO2) Content on
the Dry Sliding Behaviour of AA2024 Aluminium Composite. Journal of Mechanical Engineering. 2023. Vol. 20, Iss. 3. pp. 239–261.
5. Mahan H. M., Konovalov S. V., Panchenko I. Effect of Heat Treatment on the Mechanical Properties of the Aluminium Alloys Aa2024 with Nanoparticles. International Journal of Applied Science and Engineering. 2023. Vol. 20, Iss. 2. 2022324.
6. Perry M. E. J., Rauch H. A., Griffiths R. J., Garcia D., Sietins J. M., Zhu Yunhui, Zhu Yuntian, Hang Z. Yu. Tracing Plastic Deformation Path and Concurrent Grain Refinement during Additive Friction Stir Deposition. Materialia. 2021. Vol. 18. 101159.
7. Phillips B. J., Avery D. Z., Liu T., Rodriguez O. L., Mason C. J. T., Jordon J. B., Brewer L. N., Allison P. G. Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al – Mg – Si. Materialia. 2019. Vol. 7. 100387.
8. Pandey A. K., Chatterjee S., Siba S. Analysis and Characterisation of Weld Quality During Butt Welding Through Friction Stir Welding. Indian Journal of Engineering & Materials Sciences. 2019. Vol. 26, Iss. 5-6. pp. 298–310.
9. Khomutov M. G., Pozdniakov A. V., Churyumov A. Yu., Barkov R. Yu., Solonin A. N., Glavatskikh M. V. Flow Stress Modelling and 3D Processing Maps of Al4.5Zn4.5Mg1Cu0.12Zr Alloy with Different Scandium Contents. Applied Sciences. 2021. Vol. 11, Iss. 10. 4587.
10. Kermanidis A. T. Aircraft Aluminum Alloys: Applications and Future Trends. In: Revolutionizing Aircraft Materials and Processes. Springer International Publishing, 2020. pp. 21–55.
11. Bodukuri A. K., Eswaraiah K., Rajendar K., Sampath V. Fabrication of Al – SiC – B4C Metal Matrix Composite by Powder Metallurgy Technique and Evaluating Mechanical Properties. Perspectives in Science. 2016. Vol. 8. pp. 428–431.
12. Pradhan S., Ghosh S., Barman T. K., Sahoo P. Tribological Behavior of Al – SiC Metal Matrix Composite Under Dry, Aqueous and Alkaline Medium. Silicon. 2017. Vol. 9. pp. 923– 931.

13. Jain P. K., Baredar P., Soni S. C. Development of Silicon Carbide Particle Reinforced Aluminium 6101 Metal Matrix Composite Using Two-Step Stir Casting. Materials Today: Proceedings. 2019. Vol. 18. pp. 3521–3525.
14. Shalaby E. A. M., Churyumov A. Yu., Besisa D. H. A., Daoud A., Abou El-khair M. T. A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/ AlN and A359/SiC Composites. Journal of Materials Engineering and Performance. 2017. Vol. 26. pp. 3079–3089.
15. Mohamed E. A., Churyumov A. Yu. Investigation of the Microstructure and Properties of Al – Si – Mg/Sic Composite Materials Produced by Solidification Under Pressure. Physics of Metals and Metallography. 2016. Vol. 117. pp. 1054–1060.
16. Zulfia A., Raga K., Narottama W., Yunus S. Al6061 Reinforced Al2O3 Metal Matrix Composite Produced by Double Blade Stir Casting. International Journal on Advanced Science, Engineering and Information Technology. 2019. Vol. 9, Iss. 5. pp. 1544–1549.
17. Behera B., Dalai R., Mishra D. K., Badjena S. K. Development and Characterisation of Al2O3 and SiC Reinforced Al – Cu Metal Matrix Hybrid Composites. Materials Science Forum. 2020. pp. 202–208.
18. Pozdniakov A. V., Lotfy A., Qadir A., Zolotorevskiy V. S. Effect of the B4C Content on the Structure and Thermal Expansion Coefficient of the Al – 5% Cu Alloy-Based Metal-Matrix Composite Material. The Physics of Metals and Metallography. 2016. Vol. 117. pp. 783–788.
19. Pozdniakov A. V., Lotfy A., Qadir A., Shalaby E., Khomutov M. G., Churyumov A. Yu., Zolotorevskiy V. S. Development of Al5Cu/B4C Composites with Low Coefficient of Thermal Expansion for Automotive Application. Materials Science and Engineering: A. 2017. Vol. 688. pp. 1–8.
20. Pozdniakov A. V., Zolotorevskiy V. S., Barkov R. Y., Lotfy A., Bazlov A. I. Microstructure and Material Characterisation of 6063/B4C and 1545K/B4C Composites Produced by Two Stir Casting Techniques for Nuclear Applications. Journal of Alloys and Compounds. 2016. Vol. 664. pp. 317–320.
21. Lotfy A., Pozdniakov A. V., Zolotorevskiy V. S., Abouelkhair M. T., Daoud A., Mochugovskiy A. G. Novel Preparation of Al5%Cu / BN and Si3N4 Composites with Analysing Microstructure, Thermal and Mechanical Properties. Materials Characterization. 2018. Vol. 136. P. 144–151.

22. Shalaby E. A. M., Churyumov A. Yu., Solonin A. N., Lotfy A. Preparation and Characterisation of Hybrid A359/ (Sic + Si3n4) Composites Synthesised by Stir/Squeeze Casting Techniques. Materials Science and Engineering: A. 2016. Vol. 116. pp. 847–861.
23. Alekseev A. V., Yesikov M. A., Strekalov V. V., Mali V. I., Khasin A. A., Predtechensky M. R. Effect of Single Wall Carbon Nanotubes on Strength Properties of Aluminum Composite Produced by Spark Plasma Sintering and Extrusion. Materials Science and Engineering: A. 2020. Vol. 793. 139746.
24. Zhang X., Li S., Pan B., Pan D., Liu L., Hou X., Chu M., Kondoh K., Zhao M. Regulation of Interface Between Carbon Nanotubesaluminum and Its Strengthening Effect in CNTs Reinforced Aluminum Matrix Nanocomposites. Carbon. 2019. Vol. 155. pp. 686–696.
25. Lotfy A., Pozdniakov A. V., Zolotorevskiy V. S., Mohamed E., el-Khair M. T. A., Daoud A., Fairouz F. Microstructure, Compression and Creep Properties of Al – 5% Cu – 0.8 Mn/5% B4C Composites. Materials Research Express. 2019. Vol. 6, Iss. 9. 095530.
26. Chawla N., Chawla K. K. Metal Matrix Composites. 2ed. Springer: New York, 2022. XVI+370 p.
27. Ding W., Cheng Y., Chen T., Zhao X., Liu X. Research Status and Application Prospect of Aluminum Matrix Com posites. Research and Application of Materials Science. Vol. 2, Iss.1. pp. 23–33.
28. Muthukrishnan N., Davim J. P. Optimisation of Machining Parameters of Al/SiC-MMC with ANOVA and ANN Analysis. Journal of Materials Processing Technology. 2009. Vol. 209, Iss. 1. pp. 225–232.
29. Tastan M., Gökozan H., Çavdar P. S., Soy G., Çavdar U. Analysis of Artificial Aging with Induction and Energy Costs of 6082 Al and 7075 Al Materials. Revista de Metalurgia. 2009. Vol. 55, Iss. 1. 137.
30. Xia H., Zhang L., Zhu Y., Li N., Sun Y., Zhang J., Ma H. Mechanical Properties of Graphene Nanoplatelets Reinforced 7075 Aluminum Alloy Composite Fabricated by Spark Plasma Sintering. International Journal of Minerals, Metallurgy and Materials. 2020. Vol. 27, Iss. 9. pp. 1295–1300.

Full content Study of influence of additive wire-arc manufacturing modes on microstructure of AA7075 alloy
Back