Journals →  Цветные металлы →  2024 →  #11 →  Back

Композиционные материалы и многофункциональные покрытия
ArticleName Коррозионная защита магниевых сплавов гибридными smart-покрытиями с галлуазитными нанотрубками, импрегнированными ингибитором коррозии
DOI 10.17580/tsm.2024.11.11
ArticleAuthor Гнеденков А. С., Синебрюхов С. Л., Марченко В. С., Гнеденков С. В.
ArticleAuthorData

Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия

А. С. Гнеденков, главный научный сотрудник, заведующий лабораторией, докт. хим. наук, профессор РАН, эл. почта: asg17@mail.com
С. Л. Синебрюхов, заместитель директора по научной работе, докт. хим. наук, доцент, член-корреспондент РАН, эл. почта: sls@ich.dvo.ru
В. С. Марченко, младший научный сотрудник, эл. почта: filonina.vs@gmail.com
С. В. Гнеденков, директор, докт. хим. наук, профессор, член-корреспондент РАН, эл. почта: svg21@hotmail.com

Abstract

Разработан способ формирования на поверхности магниевого сплава МА8 гибридного покрытия с функцией самозалечивания при использовании метода плазменного электролитического оксидирования, обеспечивающего создание керамикоподобной основы, подходящей для последующей модификации защитного слоя галлуазитными нанотрубками (ГНТ), используемыми в качестве наноконтейнеров для ингибитора. Представлен способ импрегнирования ГНТ ингибитором коррозии бензотриазолом (БTA) и их введения в матрицу биорезорбируемого полимерного материала — поликапролактона (ПКЛ). Сформированы и изучены гибридные покрытия, содержащие ГНТ, загруженные БTA, в составе полимерной матрицы ПКЛ, а также, композиционное покрытие с поликапролактоном и ГНТ без ингибитора. Методами сканирующей электронной микроскопии, энергодисперсионной спектроскопии, рентгенофазового анализа и рентгеновской фотоэлектронной спектроскопии установлена морфология, определен элементный и химический состав сформированных защитных слоев. Уровень антикоррозионной защиты покрытий был установлен методами электрохимической импедансной спектроскопии и потенциодинамической поляризации в процессе выдержки образцов в растворе Хэнкса. Установлено, что наилучшими защитными свойствами обладают антикоррозионные покрытия, содержащие ГНТ с БТА. Установлен механизм самозалечивания образцов с гибридным покрытием, заключающийся в формировании в области дефекта малорастворимого комплекса Mg(БTA – H)2. Такой пассивирующий слой препятствует проникновению к подложке из магниевого сплава агрессивных хлорид-ионов и обеспечивает формирование кристаллических продуктов коррозии, защищающих материал от деградации. Сформированное на поверхности биодеградируемого МА8 многофункциональное гибридное защитное покрытие обладает улучшенными антикоррозионными свойствами и способствует расширению области практического применения этого материала.

Формирование smart-покрытия и установление механизма коррозии материала выполнено при поддержке Гранта РНФ (проект № 24-73-10008). Изучение химического состава и электрохимических свойств проведено при поддержке Гранта РНФ (проект № 20-13-00130). Данные РФА получены в рамках государственного задания Министерства науки и высшего образования Российской Федерации (проект № FWFN(0205)–2025–0001).

keywords Магниевый сплав, галлуазитные нанотрубки, плазменное электролитическое оксидирование, раствор Хэнкса, smart-покрытие, бензотриазол, механизм ингибирования
References

1. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Gnedenkov S. V. Features of the magnesium alloys corrosion in the chloride-containing media // Solid State Phenomena. 2014. Vol. 213. P. 143–148.
2. Rahman M., Li Y., Wen C. HA coating on Mg alloys for biomedical applications: A review // Journal of Magnesium and Alloys. 2020. Vol. 8, No. 3. P. 929–943.
3. Fattah-Аlhosseini A., Chaharmahali R., Babaei K., Nouri M. et al. A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys // Journal of Magnesium and Alloys. 2022. Vol. 10, No. 9. P. 2354–2383.
4. Kopp A., Fischer H., Soares A. P., Schmidt-Bleek K. et al. Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Götingen miniature pigs // Acta Biomaterialia. 2022. Vol. 157. DOI: 10.1016/j.actbio.2022.11.052
5. Fattah-Аlhosseini A., Chaharmahali R., Babaei K. Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings: A review // Journal of Magnesium and Alloys. 2022. Vol. 10, No. 5. P. 1171–1190.
6. Мураев А. А., Мурзабеков А. И., Орлов Е.А., Тарасов Ю. В. Плазменное электролитическое оксидирование для формирования поверхности дентальных имплантатов // Гены и Клетки. 2022. Т. 17, № 3. C. 156–157.
7. Sinebryukhov S. L., Gnedenkov A. S., Khrisanfova O. A., Gnedenkov S. V.Influence of plasma electrolytic oxidation on mechanical characteristics of NiTi alloy // Surface Engineering. Taylor & Francis, 2009. Vol. 25, No. 8. P. 565–569.

8. Gnedenkov S. V., Khrisanfova O. A., Sinebryukhov S. L., Puz A. V. et al. Composite protective coatings on nitinol surface // Materials and Manufacturing Processes. 2008. Vol. 23, No. 8. P. 879–883.
9. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Gnedenkov S. V. Microscale morphology and properties of the PEO-coating surface // Physics Procedia. 2012. Vol. 23, № 2011. P. 98–101.
10. Zhang F., Ju P., Pan M., Zhang D. et al. Self-healing mechanisms in smart protective coatings: A review // Corrosion Science. 2018. Vol. 144. P. 74–88.
11. Лузгина А. С., Голубев А. В., Субос Г. А., Ворончихин В. Д. Применение самовосстанавливающихся полимерных материалов в качестве защитных покрытий // Решетневские чтения. Материалы XXV Международной научно-практической конференции, посвященной памяти генерального конструктора ракетно-космических систем академика М. Ф. Решетева. В 2-х частях. Часть 1 / под ред. Ю. Ю. Логинова. — Красноярск, 2021. C. 659–661.
12. Украинская Е. В., Ищенко Т. Л. Самовосстанавливающиеся лакокрасочные покрытия // Перспективные ресурсосберегающие технологии развития лесопромышленного комплекса : Материалы Международной научно-практической конференции молодых ученых и студентов, Воронеж, 29 сентября 2023 года. — Воронеж : Воронежский государственный лесотехнический ун-т., 2023. C. 189–192.
13. Алиев Д. Э., Иманова Г. И. Применение самовосстанавливающихся материалов для защиты от коррозии морских трубопроводов // Вестник науки. 2024. Т. 1, № 3. P. 459–468.
14. Gnedenkov A. S., Kononenko Y. I., Sinebryukhov S. L., Filonina V. S. et al. The effect of smart PEO-coatings impregnated with corrosion inhibitors on the protective properties of AlMg3 aluminum alloy // Materials. 2023. Vol. 16, No. 6. 2215.
15. Gnedenkov A. S., Sinebryukhov S. L., Filonina V. S., Ustinov A. Y. et al. Hybrid coatings for active protection against corrosion of Mg and its alloys // Polymers. 2023. Vol. 15, No. 14. 3035.
16. Castro Y., Özmen E., Durán A. Integrated self-healing coating system for outstanding corrosion protection of AA2024 // Surface and Coatings Technology. 2020. Vol. 387. February. 125521.
17. Yan D., Wang Y., Liu J., Song D. et al. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy // Journal of Alloys and Compounds. 2020. Vol. 824. 153918.
18. Li J., He N., Li J., Fu Q. et al. A silicate-loaded MgAl LDH selfhealing coating on biomedical Mg alloys for corrosion retardation and cytocompatibility enhancement // Surface and Coatings Technology. 2022. Vol. 439. 128442.
19. Farshid S., Kharaziha M., Atapour M. A self-healing and bioactive coating based on duplex plasma electrolytic oxidation/polydopamine on AZ91 alloy for bone implants // Journal of Magnesium and Alloys. 2023. Vol. 11, No. 2. P. 592–606.
20. Бататова Р. М. Получение антикорризионных покрытий путем введения микрокапсул // Актуальные научные исследования : сборник статей XII Международной научно-практической конференции : в 4 ч., Пенза, 05 июня 2023 г. Часть 1. — Пенза : Наука и Просвещение. 2023. C. 26–27.
21. Shulha T., Serdechnova M., Lamaka S. V., Lu X. et al. Corrosion inhibitors intercalated into layered double hydroxides prepared in situ on AZ91 magnesium alloys: structure and protection ability // ACS Applied Materials & Interfaces. 2023. Vol. 15, No. 4. P. 6098–6112.
22. Liu X., He H., Zhang T.C., Ouyang L. et al. Superhydrophobic and self-healing dual-function coatings based on mercap tabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys // Chemical Engineering Journal. 2021. Vol. 404. 127106.
23. He Y., Qi X., Peng Z., Ren Y. et al. Green inhibitor loaded functional halloysite nanotubes modified coatings for improving corrosion protection of carbon steel // Materials Today Communications. 2024. Vol. 38. 108231.
24. Li J., Luo M., Chen Z., Zhuang E. et al. Anti-corrosion mechanism of MgAl-LDHs inhibitors with varying anionic charge on reinforcing steel in simulated concrete pore solutions // Construction and Building Materials. 2023. Vol. 363. 129882.
25. Chen Y., Lu X., Lamaka S. V., Ju P. et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors // Applied Surface Science. 2020. Vol. 504. 144462.
26. Anjum M. J., Zhao J.-M., Asl V. Z., Malik M. U. Green corrosion inhibitors intercalated Mg:Al layered double hydroxide coatings to protect Mg alloy // Rare Metals. 2021. Vol. 40, No. 8. P. 2254–2265.
27. Ashraf I. N., Moussa A. M., Kahraman R., Shakoor R. A. Study on the corrosion behavior of polymeric nanocomposite coatings containing halloysite nanotubes loaded with multicomponent inhibitor // Arabian Journal of Chemistry. 2022. Vol. 15, No. 9. 104107.
28. Adsul S. H., Siva T., Sathiyanarayanan S., Sonawane S. H. et al. Self-healing ability of nanoclay-based hybrid sol-gel coatings on magnesium alloy AZ91D // Surface and Coatings Technology. 2017. Vol. 309. P. 609–620.
29. Lvov Y., Wang W., Zhang L., Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds // Advanced Materials. 2016. Vol. 28, No. 6. P. 1227–1250.
30. Lisuzzo L., Cavallaro G., Milioto S., Lazzara G. Halloysite nanotubes filled with salicylic acid and sodium diclofenac: effects of vacuum pumping on loading and release properties // Journal of Nanostructure in Chemistry. 2021. Vol. 11, No. 4. P. 663–673.
31. Qureshi A., Habib S., Nawaz M., Shakoor R. A. et al. Modified halloysite nanotubes decorated with Ceria for synergistic corrosion inhibition of Polyolefin based smart composite coatings // Applied Clay Science. 2023. Vol. 233. 106827.
32. Gnedenkov A. S., Sinebryukhov S. L., Nomerovskii A. D., Filonina V. S. et al. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // Journal of Magnesium and Alloys. 2023. Vol. 11, No. 10. P. 3688–3709.
33. Wang J.-L., Ke C., Pohl K., Birbilis N. et al. The unexpected role of benzotriazole in mitigating magnesium alloy corrosion: a nucleating agent for crystalline nanostructured magnesium hydroxide film // Journal of The Electrochemical Society. 2015. Vol. 162, No. 8. P. C403–C411.
34. Guo X., An M., Yang P., Li H., Su C. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmentalfriendly electrolyte // Journal of Alloys and Compounds. 2009. Vol. 482, No. 1-2.
35. Sun M., Yerokhin A., Bychkova M. Y., Shtansky D. V. et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy // Corrosion Science. 2016. Vol. 111. P. 753–769.

Language of full-text russian
Full content Buy
Back