Журналы →  Черные металлы →  2024 →  №9 →  Назад

Конструктивно-технологическая прочность и работоспособность материалов
Название Анализ эффективности снижения потерь водорода в трубопроводе из различных аустенитных коррозионностойких сталей
DOI 10.17580/chm.2024.09.08
Автор А. П. Петкова, В. А. Злотин
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

А. П. Петкова, профессор кафедры материаловедения и технологии художественных изделий (МиТХИ), докт. техн. наук, эл. почта: apetkova@inbox.ru
В. А. Злотин, аспирант кафедры МиТХИ, эл. почта: zlotinvladimir@mail.ru

Реферат

В целях снижения выбросов в атмосферу углекислого газа, образующегося в результате применения на производстве и в быту нефтепродуктов, предложено использование водорода как экологически чистого энергетического ресурса вместо стандартных видов топлива. Однако водород обладает высокой проникающей способностью, что ведет к его неизбежным диффузионным потерям через стенку трубопровода в процессе транспортировки и хранения. На основании литературных данных и математических преобразований предложена расчетная модель для оценки утечки водорода при перекачке по трубопроводу под давлением до 1,2 МПа при температуре перекачиваемой среды от 300 до 600 К. С использованием табличных литературных данных по коэффициентам проницаемости на основании расчетной модели определены возможные потери водорода при его транспортировке по трубопроводу, выполненному из разных марок аустенитных коррозионностойких сталей (304, 304L, 310, 316, 316L, 316LN, 321, 21-6-9, 21-9-9) при температурах от 300 до 600 К. По результатам расчетов установлено, что самым эффективным материалом по снижению проницаемости водорода является сталь 304L (максимальные потери ~69 л/год при температуре 600 К), а наименее эффективным — сталь 310 (903 л/год при температуре в 600 К). В остальных сталях объем потерь варьируется в диапазоне ~200–300 л/год. Анализ состава сталей показал, что снижение концентрации углерода, азота, серы и фосфора приводит к повышению ее стойкости к проникновению водорода.

Ключевые слова Компримированный водород, трубопровод, проницаемость, диффузия, потери, аустенитные стали, транспортирование
Библиографический список

1. Zhdaneev O. V. Ensuring technological sovereignty of the fuel and energy complex industries of the Russian Federation. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1070. DOI: 10.31897/PMI.2022.107
2. Shammazov I. A., Borisov A. V., Nikitina V. S. Modeling the operation of gravity sections of an oil pipeline. Bezopasnost truda v pormyshlennosti. 2024. No. 1. pp. 74–80. DOI: 10.24000/0409-2961-2024-1-74-80
3. Bakhtizin R. N., Zaripov R. M., Korobkov G. E., Masalimov R. B. Evaluation of the influence of internal pressure causing additional bending of the pipeline. Zapiski Gornogo instituta. 2020. Vol. 242. pp. 160. DOI: 10.31897/pmi.2020.2.160
4. Fetisov V., Gonopolsky A. M., Davardoost H. et al. Regulation and impact of VOC and CO2 emissions on low-carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry. Energy Science & Engineering. 2023. Vol. 11, Iss. 4. pp. 1516–1535. DOI: 10.1002/ese3.1383
5. Korshak A. A., Korshak A. A., Pshenin V. V. Calculation of phase transitions in condensation units for recovery of oil and oil products vapors (Russian). Oil Industry Journal. 2021. Vol. 2021, Iss. 06. pp. 98–101. DOI: 10.24887/0028-2448-2021-6-98-101
6. Pshenin V. V., Zakirova G. S. Improving the efficiency of oil vapor recovery systems during commodity-transport operations at oil terminals. Zapiski Gornogo instituta. 2023. Vol. 265. pp. 121–128. DOI: 10.31897/PMI.2023.29
7. Zagashvili Y., Kuzmin A., Buslaev G. et al. Small-scaled production of blue hydrogen with reduced carbon footprint. Energies. 2021. Vol. 14. Iss. 16. pp. 5194. DOI: 10.3390/en14165194
8. Kopteva A., Kalimullin L., Tcvetkov P., Soares A. Prospects and obstacles for green hydrogen production in Russia. Energies. 2021. Vol. 14, Iss. 3. 718. DOI: 10.3390/en14030718
9. Litvinenko V. S., Tsvetkov P. S., Dvoinikov M. V., Buslaev G. V. Barriers to the implementation of hydrogen initiatives in the context of sustainable development of global energy. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 428–438. DOI: 10.31897/pmi.2020.4.5
10. Bazhenov S., Dobrovolsky Y., Maximov A., Zhdaneev O. V. Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 2022. Vol. 54. 102867. DOI: 10.1016/j.seta.2022.102867
11. Nastich S. Y., Lopatkin V. A. Effect of hydrogen gas on mechanical properties of pipe metal of main gas pipelines. Metallurgist. 2022. Vol. 66, Iss. 5-6. pp. 625–638. DOI: 10.1007/s11015-022-01369-0
12. Zhou C. et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. International Journal of Hydrogen Energy. 2019. Vol. 44, Iss. 40. pp. 22547–22558. DOI: 10.1016/j.ijhydene.2019.04.239
13. Alekseeva O. K., Kozlov S. I., Fateev V. N. Hydrogen transportation. Transport na alternativnom toplive. 2011. No. 3 (21). pp. 18–24.
14. Klopčič N., Stöhr T., Grimmer I., Sartory M. et al. Refurbishment of natural gas pipelines towards 100 % hydrogen — a thermodynamic-based analysis. Energies. 2022. Vol. 15, Iss. 24. 9370. DOI: 10.3390/en15249370
15. Lu H. T., Li W., Miandoab E. S., Kanehashi S. et al. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: A review. Frontiers of Chemical Science and Engineering. 2021. Vol. 15. Iss. 3. pp. 464–482. DOI: 10.1007/s11705-020-1983-0
16. Pryakhin E. I., Pribytkova D. A. The influence of the quality of surface preparation of pipes for heating networks on their corrosion resistance during operation in underground conditions. Chernye Metally. 2023. No. 11. pp. 97–102.
17. Pryakhin E. I., Azarov V. A. Increasing the adhesion of fluoroplastic coatings to steel surfaces of pipes with a view to their use in gas transmission systems. Chernye Metally. 2024. No. 3. рр. 69–75.
18. Nemanič V. Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nuclear Materials and Energy. 2019. Vol. 19. pp. 451–457. DOI: 10.1016/j.nme.2019.04.001
19. Lei Y., Hosseini E., Liu L., Scholes C. A. et al. Internal polymeric coating materials for preventing pipeline hydrogen embrittlement and a theoretical model of hydrogen diffusion through coated steel. International Journal of Hydrogen Energy. 2022. Vol. 47, Iss. 73. pp. 31409–31419. DOI: 10.1016/j.ijhydene.2022.07.034
20. Weihrauch M., Patel M., Patterson E. A. Measurements and predictions of diffusible hydrogen escape and absorption in catholically charged 316LN austenitic stainless steel. Scientific Reports. 2023. Vol. 13, Iss. 1. 10545. DOI: 10.1038/s41598-023-37371-y
21. Yang W. W. et al. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel. 2023. Vol. 345. 128234. DOI: 10.1016/j.fuel.2023.128234
22. Zagashvili Yu. V., Kuzmin A. M. Small-scale hydrogen production plant. Patent RF, No. 184920. Applied: 29.06.2018. Published: 14.11.2018.
23. Xiukui S., Jian X., Yiyi L. Hydrogen permeation behaviour in austenitic stainless steels. Materials Science and Engineering: A. 1989. Vol. 114. pp. 179–187. DOI: 10.1016/0921-5093(89)90857-5
24. Gorman J. K., Nardella W. R. Hydrogen permeation through metals. Vacuum. 1962. Vol. 12, Iss. 1. pp. 19–24. DOI: 10.1016/0042-207X(62)90821-7
25. Quick N. R., Johnson H. H. Permeation and diffusion of hydrogen and deuterium in 310 stainless steel, 472 K to 779 K. Metallurgical Transactions A. 1979. Vol. 10. pp. 67–70. DOI: 10.1007/BF02686408
26. Hashimoto E., Kino T. Hydrogen permeation through type 316 stainless steels and ferritic steel for a fusion reactor. Journal of nuclear materials. 1985. Vol. 133. pp. 289–291. DOI: 10.1016/0022-3115(85)90153-9
27. Forcey K. S. et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications. Journal of Nuclear Materials. 1988. Vol. 160. Iss. 2-3. pp. 117–124. DOI: 10.1016/0022-3115%2888%2990038-4
28. Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer, 2016. 921 p.
29. Ngameni R., Millet P. Derivation of the diffusion impedance of multi-layer cylinders. Application to the electrochemical permeation of hydrogen through Pd and PdAg hollow cylinders. Electrochimica Acta. 2014. Vol. 131. pp. 52–59. DOI: 10.1016/j.electacta.2014.01.076
30. Pisarev A. A., Tsvetkov I. V., Marenkov E. D., Yarko S. S. Hydrogen permeability through metals. Proceedings of the Fifth International Conference and the Ninth International School of Young Scientists and Specialists named after A. A. Kurdyumov. 2014. Vol. 1. pp. 155–176.
31. Li Y., Barzagli F., Liu P. et al. Mechanism and evaluation of hydrogen permeation barriers: a critical review. Industrial & Engineering Chemistry Research. 2023. Vol. 62. Iss. 39. pp. 15752–15773. DOI: 10.1021/acs.iecr.3c02259
32. Engels J., Houben A., Linsmeier C. Hydrogen isotope permeation through yttria coatings on Eurofer in the diffusion limited regime. International Journal of Hydrogen Energy. 2021. Vol. 46, Iss. 24. pp. 13142–13149. DOI: 10.1016/j.ijhydene.2021.01.072
33. Zafra A. et al. Hydrogen-assisted fatigue crack growth: pre-charging vs in-situ testing in gaseous environments. Materials Science and Engineering: A. 2023. Vol. 871. 144885. DOI: 10.31224/2994
34. San Marchi C., Somerday B. P., Robinson S. L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. International Journal of Hydrogen Energy. 2007. Vol. 32. No. 1. pp. 100–116. DOI: 10.1016/j.ijhydene.2006.05.008
35. Wetegrove M., Jazmin Duarte M., Taube K., et al. Preventing hydrogen embrittlement: the role of barrier coatings for the hydrogen economy. Hydrogen. 2023. Vol. 4, Iss. 2. pp. 307-322. DOI: 10.3390/hydrogen4020022
36. Tian X., Pei J. Study progress on the pipeline transportation safety of hydrogen-blended natural gas. Heliyon. 2023. Vol. 9, Iss. 11. e21454. DOI: 10.1016/j.heliyon.2023.e21454
37. Bolobov V. I. et al. Estimation of the influence of compressed hydrogen on the mechanical properties of pipeline steels. Energies. 2021. Vol. 14, Iss. 19. 6085. DOI: 10.3390/en14196085
38. Ganzulenko O. Yu., Kirillov N. B., Petkova A. P., Yakovitskaya M. V. Hydrogen permeability and performance of austenitic steels and alloys in hydrogen-containing environments. Materialovedenie. Energetika. 2011. No. 2 (123). pp. 218–224.

Полный текст статьи Анализ эффективности снижения потерь водорода в трубопроводе из различных аустенитных коррозионностойких сталей
Назад