Journals →  Цветные металлы →  2023 →  #8 →  Back

К 250-летию Санкт-Петербургского горного университета императрицы Екатерины II и 20-летию Международного симпозиума «Нанофизика и наноматериалы»
Композиционные материалы, многофункциональные покрытия из наноматериалов
ArticleName Улучшение свойств полимерной эпоксидной матрицы добавками нанооксидов алюминия и кремния
DOI 10.17580/tsm.2023.08.06
ArticleAuthor Сызранцев В. В.
ArticleAuthorData

Грозненский государственный нефтяной технический университет имени академика М. Д. Миллионщикова, Грозный, Россия:

Сызранцев В. В., директор НИЦКП «Нанотехнологии и наноматериалы», канд. физ.-мат. наук, эл. почта: vvveliga@mail.ru

Abstract

Проведено сравнительное исследование упрочнения композитов при внедрении в них наночастиц SiO2 и Al2O3, которые были получены четырьмя разными способами. Анализировали изменения модуля упругости образцов и скорости восстановления дефекта, вызванного вдавливанием четырехугольной алмазной пирамидки по методу Виккерса. Показано, что использование частиц, синтезированных разными методами, при сохранении их химического состава и размера приводит к структурным изменениям в композите. При допировании в эпоксидную смолу наночастиц SiO2 и Al2O3, полученных разными способами, общая картина упрочнения материала сохраняется, а рост и снижение его модуля упругости происходит при разных их концентрациях. Анализ процесса восстановления образцов после микровдавливания показал улучшение «залечивания» микродефектов поверхности у модифицированного композита по сравнению с исходным материалом. А при концентрации наночастиц от 0,5 до 2,0 % (в зависимости от метода их синтеза) происходит полное восстановление отпечатка. Кроме того, для восстановления образцов требовалось разное время — от 30 до более 90 с при допировании разными частицами. Описанные структурные изменения композита происходят похожим образом при допировании как наночастиц Al2O3, так и SiO2. Установлено, что наиболее быстрый эффект восстановления обеспечивают наночастицы, полученные пирогенным методом, а замедленный — жидкофазным синтезом. Вероятной причиной такой вариативности упрочняющего эффекта наночастиц является разная активность (сила и состав активных центров) их поверхности, формируемая при разных условиях синтеза. Эта особенность делает затруднительным непосредственное сравнение характеристик композита, вызванных наполнителями, которые получены при разных условиях, хотя и имеют одинаковый химический и структурный состав.

keywords Нанооксиды алюминия и кремния, композиты, наночастицы, активные центры поверхности, остаточная деформация, метод Виккерса, структура композита
References

1. Liang J. Z. Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites Part B. 2013. Vol. 51. pp. 224–232. DOI: 10.1016/j.compositesb.2013.03.019
2. Takahashi S., Imai Y., Kan A., Hotta Y. et al. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications. Journal of Alloys and Compounds. 2014. Vol. 615. pp. 141–145. DOI: 10.1016/j.jallcom.2014.06.138
3. Bailey E. J., Winey K. I. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer Science. 2020. Vol. 105, No. 7. 101242. DOI: 10.1016/j.progpolymsci.2020.101242

4. New materials: preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 247 p.
5. Alattar A. L., Nikitina L. N., Bazhin V. Yu. Enhanced physical and mechanical properties of aluminium alloys reinforced with boron carbide particles. Elektrometallurgiya. 2022. No. 7. pp. 13–22. DOI: 10.21285/1814-3520-2020-3-663-671
6. Mohandesi J. A., Refahi A., Meresht E. S., Berenji S. Effect of temperature and particle weight fraction on mechanical and micromechanical properties of sand-polyethylene terephthalate composites: a laboratory and discrete element method study. Composites Part B. 2011. Vol. 42, No. 6. pp. 1461–1467.
7. Prokopchuk N. R., Globa A. I., Laptik I. O., Syrkov A. G. The properties of metal coatings enhanced with diamond nanoparticles. Tsvetnye Metally. 2021. No. 6. pp. 50–54.
8. Alattar A. L., Bazhin V. Y. Al–Cu–B4C composite materials for the production of high-strength billets. Metallurgist. 2020. Vol. 64, No. 5-6. pp. 566–573. DOI: 10.1007/s11015-020-01028-2
9. Savchenkov S., Kosov Y., Bazhin V., Krylov K. et al. Microstructural master alloys features of aluminum-erbium system. Crystals. 2021. Vol. 11, No. 11. 1353. DOI: 10.3390/cryst11111353
10. Skrebnev V. I., Serjan S. L., Kalugina E. V. Research of resistance to waterjet wear of plastic and steel pipes. Assessment of the main parameters that affect the wear rate of hydraulic transport systems. Plasticheskie massy. 2020. No. 9-10. pp. 40–44. DOI: 10.35164/0554-2901-2020-9-10-40-44
11. Tanaka T., Kozako M., Okamoto K. Toward high thermal conductivity nanomicro epoxy composites with sufficient endurance voltage. Journal of International Council on Electrical Engineering. 2012. Vol. 2, No. 1. pp. 90–98. DOI: 10.5370/JICEE.2012.2.1.090
12. Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochimica Acta. 2011. Vol. 523, No. 1. pp. 25–45. DOI: 10.1016/j.tca.2011.06.012
13. Peinado F. et al. Open-grade wearing course of asphalt mixture containin gferrite for use as ferromagnetic pavement. Composites Part B. 2014. Vol. 57. pp. 262–268.
14. Hunyek A., Sirisathitkul C. Electromagnetic and dynamic mechanical properties of extruded cobalt ferrite-polypropylene composites. Polymer-Plastics Technology and Engineering. 2011. Vol. 50, Iss. 6. pp. 593–598. DOI: 10.1080/03602559.2010.543743
15. Kamanina N. V., Zubtcova Yu. A., Kuzhakov P. V., Zak A. et al. Correlations between spectral, time and orientation parameters of liquid crystal cells with WS2 nanoparticles. Liquid Crystals and their Applications. 2020. Vol. 20, No. 3. pp. 41–48. DOI: 10.18083/LCAppl.2020.3.41
16. Kamanina N. V., Zubtsova Yu. A., Toikka A. S., Likhomanova S. V. et al. Temporal characteristics of liquid crystal cell with WS2 nanoparticles: mesophase sensitization and relief features. Liquid Crystals and their Applications. 2020. Vol. 20, No. 1. pp. 34–40. DOI: 10.18083/LCAppl.2020.1.34
17. Svitkova B., Zavisova V., Nemethova V., Koneracka M. et al. Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization. Beilstein Journal of Nanotechnology. 2021. No. 12. pp. 270–281.
18. Yakasai F., Jaafar M. Z., Bandyopadhyay S., Agi A. et al. Application of iron oxide nanoparticles in oil recovery – a critical review of the properties, formulation, recent advances and prospects. Journal of Petroleum Science and Engineering. 2022. Vol. 208, Part C. 109438.
19. Litvinova T. E., Oleynik I. L. Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals. Journal of Mining Institute. 2021. Vol. 251. pp. 712–722. DOI: 10.31897/PMI.2021.5.10
20. Kondrasheva N. K., Rudko V. A., Nazarenko M. Y., Gabdulkhakov R. R. Influence of parameters of delayed asphalt coking process on yield and quality of liquid and solid-phase products. Journal of Mining Institute. 2020. Vol. 241. 97. DOI: 10.31897/pmi.2020.1.97
21. Cheremisina O. V., Cheremisina E. A., Ponomareva M. A., Fedorov А. Т. Sorption of rare earth coordination compounds. Journal of Mining Institute. 2020. Vol. 244. pp. 474–481. DOI: 10.31897/pmi.2020.4.10
22. Pak V. N., Lapatin N. A., Pronin V. P., Yachmenova L. A. Obtaining and electronic emission of planar structures of metallic copper on a porous ceramic substrate. Tsvetnye Metally. 2021. No. 5. pp. 55–58.
23. Kozlov G. V., Dolbin I. V. The interconnection of efficiency and the degree of aggregation of nanofiller in polymer nanocomposites. Condensed Matter and Interphases. 2022. Vol. 24, No. 1. pp. 45–50. DOI: 10.17308/kcmf.2022.24/9054
24. Filippov A. A., Fomin V. M., Karpov E. V. Experimental determination of the elastic characteristics of filled polymers using mechanical tests for constrained compression. AIP Conference Proceedings. 2019. Vol. 2125, 020014. DOI: 10.1063/1.5117374
25. Khozin V. G. Hardening of epoxy polymers. Kazan : Pechatnyi dom, 2004. 446 p.
26. Vollath D., Fischer F. D., Holec D. Surface energy of nanoparticles – influence of particle size and structure. Beilstein Journal Nanotechnology. 2018. Vol. 9. pp. 2265–2276. DOI: 10.3762/bjnano.9.211
27. Syzrantsev V. V., Mjakin S. V., Katashev P. A. Comparative study of surface acid-base properties of SiO2 and Al2O3 nanoparticles prepared by different methods. Glass Physics and Chemistry. 2022. Vol. 48, No. 6. pp. 636–641. DOI: 10.1134/S1087659622800082
28. Syzrantsev V. V. Analysis of variation in the properties of the surface of SiO2 and Al2O3 nanoparticles obtained by different methods. Condensed Matter and Interphases. 2022. Vol. 24, No. 3. pp. 369–378. DOI: 10.17308/kcmf.2022.24/9860
29. Rusanova S. N., Sofina S. Y., Temnikova N. E., Starostina I. A. et al. The effect of the phase structure of silane-modified ethylene copolymers on their surface energy and adhesion properties. Polymer Science, Series D. 2020. Vol. 13, No. 3. pp. 258–264. DOI: 10.1134/S1995421220030156
30. Vertepa A. V., Starostina I. A., Stoyanov O. V., Lygina T. Z. et al. Surface-energy and acid-base properties of clays applied as polymer modifiers. Polymer Science, Series D. 2020. Vol. 13, No. 1. pp. 15–20. DOI: 10.1134/S1995421220010256
31. Sychov M. M., Zakharova N. V., Mjakin S. V. Effect of milling on the surface functionality of BaTiO3–CaSnO3 ceramics. Ceramics International. 2016. Vol. 39, No. 6. pp. 6821–6826. DOI: 10.1016/j.ceramint.2013.02.013
32. Syrkov A. G., Kushchenko A. N., Silivanov M. O., Taraban V. V. Nanostructured regulation of the surface properties and hydrophobicity of nickel and iron by solid-state reduction and modifying methods. Tsvetnye Metally. 2022. No. 5. pp. 54–59.
33. Starostina I. A., Kolpakova M. V., Stoyanov O. V. Correlation of approaches to determining the acid-base properties of different surfaces: Problems and prospects. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2020. Vol. 23, No. 6. pp. 13–19.
34. Syzrantsev V. V., Arymbaeva A. T., Zavjalov A. P., Zobov K. V. The nanofluids’ viscosity prediction through particle-media interaction layer. Materials Physics and Mechanics. 2022. Vol. 48, No. 3. pp. 386–396. DOI: 10.18149/MPM.4832022_9
35. Sychov M. M., Mjakin S. V., Nakanishi Y., Korsakov V. G. et al. Study of active surface centers in electroluminescent ZnS:Cu,Cl phosphors. Applied Surface Science. 2005. Vol. 244, No. 1-4. pp. 461–464. DOI: 10.1016/j.apsusc.2004.10.103
36. Kitichatpayak D., Makcharoen W., Vittayakorn W. Influence of various nanofillers on mechanical and electrical properties of epoxy resin composites. Polymer Plastics Technology and Materials. 2022. Vol. 61. pp. 1826–1832.
37. Hunain B. M., Abbas B. A., Akhudair J. M. Experimental and numerical studies of fatigue properties of carbon/glass fiber/epoxy hybrid composites enhanced with nano TiO2 powder. Diagnostyka. 2021. Vol. 22, Iss. 2.
pp. 75–84.
38. Syzrantsev V. V., Paukstis E. A., Larina T. V. Surface polymorphism of the silica nanoparticles. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 1008, Iss. 1. 012030. DOI: 10.1088/1757-899X/1008/1/012030

Full content Улучшение свойств полимерной эпоксидной матрицы добавками нанооксидов алюминия и кремния
Back