Journals →  Обогащение руд →  2023 →  #3 →  Back

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
ArticleName Оценка возможности применения вихретоковых сепараторов для разделения немагнитных минералов
DOI 10.17580/or.2023.03.04
ArticleAuthor Пелевин А. Е.
ArticleAuthorData

Уральский государственный горный университет, Екатеринбург, РФ:

Пелевин А. Е., профессор, д-р техн. наук, доцент, a-pelevin@yandex.ru

Abstract

Принципиально вихретоковую сепарацию можно использовать при обогащении рудных немагнитных минералов. Для расчета силы Ампера, действующей на частицы в барабанном вихретоковом сепараторе, выведена формула с использованием законов электродинамики. Выполнено математическое моделирование с оценкой величины силы Ампера, действующей на металлические частицы Au, Al, Cu, Pb и на халькопирит, пирит и самородное золото. Рассмотрены основные параметры и режимы барабанного вихретокового сепаратора, влияющие на эффективность обогащения. Приведены результаты опытов по разделению металлических частиц Al, Cu и Pb и выделению частиц пирита в проводниковую фракцию в барабанном вихретоковом сепараторе. Эксперименты подтвердили выводы, сделанные при математическом моделировании. Применение вихретоковой сепарации для сухого обогащения частиц рудных немагнитных минералов при современном уровне развития техники малоперспективно.

keywords Барабанный вихретоковый сепаратор, сила Ампера, индукция магнитного поля, электрическая проводимость, металлические частицы Al, Cu и Pb, халькопирит, пирит
References

1. Konyaev A. Yu., Abdullaev Zh. O., Zyazev M. E., Fominykh S. I. Upgrading electrodynamic separators for waste cable recycling. Tsvetnye Metally. 2020. No. 1. pp. 7–13.
2. Smith Y. R., Nagel J. R., Rajamani R. K. Eddy current separation for recovery of non-ferrous metallic particles:
A comprehensive review. Minerals Engineering. 2019. Vol. 133. pp. 149–159.
3. Dyadin B. I. Electrodynamic separation of fine particles in the pulsed traveling magnetic field. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2020. No. 1. pp. 124–130.
4. Shubov L. Ya., Stavrovsky M. E., Oleinik A. V. Technology of solid household waste. Moscow: Alfa-M Publishing House, 2011. 396 p.

5. Konyaev A. Yu., Zyazev М. Е., Bagin D. N., Ilyinskaya A. O. Evaluation of energy efficiency of eddycurrent separation plants based on linear inductors at the design stage. Voprosy Elektrotekhnologii. 2022. No. 1. pp. 22–29.
6. Shubov L. Ya., Roizman V. Ya., Dudenkov S. V. Beneficiation of solid household waste. Moscow: Nedra, 1987. 238 p.
7. Zyazev M. E., Konyaev A. Yu. Linear induction machines with modular design of linear inductors for industrial technology. Promyshlennaya Energetika. 2023. No. 2. pp. 2–8.
8. Konyaev A. Yu., Bagin D. N., Lapteva E. O. Modeling the motion of conducting particles in the active zone of a linear inductor of eddy-current separator. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Elektrotekhnika, Informatsionnye Tekhnologii, Sistemy Upravleniya. 2020. No. 36. pp. 63–79.
9. Konyaev A. Yu., Abdullaev Zh. O., Gaponenko E. V., Zyazev M. E. Methods of increasing efficiency of electrodynamic separators for processing of solid metal-containing wastes. Ekologiya Promyshlennogo Proizvodstva. 2019. No. 1. pp. 2–6.
10. Yuan Yi, Cao Bin, Zhang Xuemei, Feng Lei, Wang Tiansheng, Wang Qiang. Effects of material temperature on
the separation efficiency in a rotary-drum type eddy current separator. Powder Technology. 2022. Vol. 404. DOI: 10.1016/j.powtec.2022.117449
11. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 293–305.
12. Pelevin A. E. Weakly magnetic minerals processing in roller separators with a system of permanent magnets. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 11-1. pp. 155–168.
13. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20.
14. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592.
15. Korchevenkov S. A., Aleksandrova T. N. Preparation of standard iron concentrates from non-traditional forms of raw material using a pulsed magnetic field. Metallurgist. 2017. Vol. 61, No. 5–6. pp. 375–381.
16. Jian-feng Zhou, Song Zhang, Feng Tian, Chun-lei Shao. Simulation of oscillation of magnetic particles in 3D microchannel flow subjected to alternating gradient magnetic field. Journal of Magnetism and Magnetic Materials. 2019. Vol. 473. pp. 32–41.
17. Veerendra Singh, Samik Nag, N Gurulaxmi Srikakulapu, Asim K Mukherjee. Development of a novel magnetic separator for segregation of minerals of dissimilar electromagnetic properties. Minerals Engineering. 2023. Vol. 193. DOI: 10.1016/j.mineng.2023.108009
18. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24.
19. Pelevin A. E. Increasing the efficiency of iron ore dressing by separation in an alternative magnetic field. Chernye Metally. 2021. No. 5. pp. 4–9.
20. Pelevin A. E. Effects of magnetic flocculation on ironbearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20.
21. Youdong Jia, Jianxiong Liu, Hongshen Zhang, Jiaxing Zeng, Mingjiang Jiang. A Review on application of eddy current separation for the recycling of scraped vehicles. IWAMA 2021: Advanced manufacturing and automation XI. Singapore: Springer, 2022. pp. 141–147.
22. Zyazev M. E., Gizzatullin E. V., Konyaev A. Yu. Modeling and research into motion of conducting particles under separation in the traveling magnetic field. Voprosy Elektrotekhnologii. 2021. No. 3. pp. 5–14.
23. Ampere A. M. Electrodynamics: Selected works. Moscow: Lenand, 2015. 496 p.
24. Landau L. D., Lifshits E. M. Theoretical physics in 10 volumes. Vol. 8. Electrodynamics of continuous media. Moscow: Fizmatlit, 2016. 656 p.
25. Faddeev D. K. Technical electrodynamics. St. Petersburg: Lan', 2016. 432 p.
26. Dergunova E. A., Isaenkova M. G., Potanina L. V. Physical materials science. Vol. 8. Moscow: MEPhI, 2021. 228 p.
27. Livshits B. G., Kraposhin V. S., Linetsky Ya. L. Physical properties of metals and alloys. Moscow: Metallurgiya, 1980. 320 p.
28. Doroshenko M. V., Bashlykova T. V. Technological properties of minerals. Moscow: Teploenergetik, 2007. 296 p.
29. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 376 p.
30. Cao Bin, Yuan Yi, Shan Zhicheng, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão. Effects of particle size on the separation efficiency in a rotary-drum eddy current separator. Powder Technology. 2022. Vol. 410. DOI: 10.1016/j.powtec.2022.117870
31. Zhe Huang, Jie Zhu, Xiaowei Wu, Ruijun Qiu, Zhenming Xu, Jujun Ruan. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards. Journal of Cleaner Production. 2021. Vol. 312.
32. Konyaev A. Yu., Bagin D. N., Bektabanov Ch. A., Krylov G. A. Effects of the size of conductive particles on induction sorting efficiency in the traveling magnetic field. Voprosy Elektrotekhnologii. 2022. No. 3. pp. 5–12.
33. Urvantsev A. I. Energy separation of mineral raw materials. Ekaterinburg: Fort Dialog-Iset', 2015. 224 p.
34. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral raw material beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2005. No. 5. pp. 37–51.
35. Yan X., Wang H., Peng Z., Hao J., Zhang G., Xie W., He Y. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230.

Language of full-text russian
Full content Buy
Back