References |
1. Perego C., Villa P. Catalyst preparation methods // Catalysis Today. 1997. Vol. 34, No. 3–4. P. 281–305. 2. Danilevich V. V., Klimov O. V., Nadeina K. A., Gerasimov E. et al. Novel eco-friendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite // Superlattices Microstruct. 2018. Vol. 120. P. 148–160. 3. Misra C. Industrial alumina chemicals // Anal. Chem. 1987. Vol. 59, No. 10. P. 706A. 4. Smyshlyaeva K. I., Rudko V., Povarov V. G., Shaidulina A. A. et al. Influence of asphaltenes on the low-sulphur residual marine fuels’ stability // J. Mar. Sci. Eng. 2021. Vol. 9, No. 11. P. 1235. 5. Kudinova A. A., Poltoratckaya M. E., Gabdulkhakov R. R., Litvinova T. E. et al. Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH // Journal of Porous Materials. 2022. Vol. 29, No. 5. P. 1599–1616. 6. Gabdulkhakov R. R., Rudko V. A., Pyagay I. N. Methods for modifying needle coke raw materials by introducing additives of various origin (review) // Fuel. 2022. Vol. 310. P. 122265. 7. Gabdulkhakov R. R., Rudko V. A., Povarov V. G., Ugolkov V. L. et al. Technology of petroleum needle coke production in processing of decantoil with the use of polystyrene as a polymeric mesogen additive // ACS Omega. 2021. Vol. 6, No. 30. P. 19995–20005. 8. Leofanti G., Tozzola G., Padovan M., Petrini G. et al. Catalyst characterization: characterization techniques // Catal. Today. 1997. Vol. 34, No. 3-4. P. 307–327. 9. Boer J., Linsen B. G., Fortuin J. M. H. Physical and chemical aspects of adsorbents and catalysts. — London, 1970. — 650 p. 10. Wagner M. Thermal analysis in practice. — München : Carl Hanser Verlag GmbH & Co. KG, 2017. — 349 p. 11. Tsukada T., Segava H., Yasumori A., Okada K. Crystallinity of boehmite and its effect on the phase transition temperature of alumina // J. Mater. Chem. 1999. Vol. 9, No. 2. P. 549–553. 12. Okada K., Nagashima T., Kameshima Y., Yasumori A. et al. Relationship between formation conditions, properties, and crystallite size of boehmite // J. Colloid Interface Sci. 2002. Vol. 253, No. 2. P. 308–314. 13. Sato T. Preparation and characterization of aluminium hydroxides and aluminas. — USA : Litavran Literature, 2017. — 300 p. 14. Denigres Filho R. W. N., Rocha G. A., Vieira-Coelho A. Synthesis and characterization of boehmites obtained from gibbsite in presence of different environments // Materials Research. 2016. Vol. 19, No. 3. P. 659–668. 15. Brichkin V. N., Novikov N. A., Besedin A. A., Gordyushenkov E. E. Processes of chemical deposit crystallization // Journal of Mining Institute. 2011. Vol. 192. P. 15. 16. Golubev V. O., Litvinova T. E. Dynamic simulation of industrialscale gibbsite crystallization circuit // Journal of Mining Institute. 2021. Vol. 247. P. 88–101. 17. Sizyakov V. M., Voropanova L. A. Thermodynamic analysis of aluminium hydroxide calcination at alumina production // Journal of Mining Institute. 2013. Vol. 202. P. 35. 18. Mathieu Y., Lebeau B., Valtchev V. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions // Langmuir. 2007. Vol. 23, No. 18. P. 9435–9442. 19. Svakhina Y. A., Titova M. E., Pyagay I. N. Products of apatitenepheline ore processing in the synthesis of low-modulus zeolites // Indonesian Journal of Science and Technology. 2023. Vol. 8, No. 1. P. 49–64. 20. Shefer K. I., Cherepanova S. V., Moroz E. M., Gerasimov E. Yu. et al. Features of the real structure of pseudoboehmites: violations of the structure and layer packing caused by crystalliza tion water // Journal of Structural Chemistry. 2010. Vol. 51, No. 1. P. 132–141. 21. Baker B. Water content of pseudoboehmite: a new model for its structure // Journal of Catalysis. 1974. Vol. 33, No. 2. P. 265–278. 22. Тагандурдыева Н., Нараев В. Н., Постнов А. Ю., Мальцева Н. В. Получение гидроксида алюминия — байерита методом осаждения // Известия СПбГТИ (ТУ). 2020. Т. 53. P. 17–22. 23. Mukhamed’yarova A., Nesterova O. V., Boretsky K. S., Skibina J. D. et al. Influence of the obtaining method on the properties of amorphous aluminum compounds // Coatings. 2019. Vol. 9, No. 1. P. 41. 24. Пат. 2363659 С1 РФ. Способ получения бемита и водорода / Берш А. В., Иванов Ю. Л., Мазалов Ю. А., Корманова С. И. и др. ; зявл. 18.12.2007 ; опубл. 10.08.2009. 25. Ram S., Singh T. B., Srikant S. Thermal desorption process of water in amorphous AlO(OH) H2O fibres prepared by an electrochemical method // Materials Transactions, JIM. 1998. Vol. 39, No. 4. P. 485–491. 26. Mukhamed’yarova A. N., Gareev B. I., Nurgaliev D. K., Aliev F. A. et al. A review on the role of amorphous aluminum compounds in catalysis: avenues of investigation and potential application in petrochemistry and oil refining // Processes. 2021. Vol. 9, No. 10. P. 1811. 27. Myronyuk I. F., Mandzyuk V. I., Sachko V. M., Gun’ko V. M. Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate // Nanoscale Research Letters. 2016. Vol. 11, No. 1. P. 153. 28. Pyagai I., Zubkova O., Babykin R. et al. Influence of impurities on the process of obtaining calcium carbonate during the processing of phosphogypsum // Materials. 2022. Vol. 15, No. 12. P. 4335. 29. Stoica G., Groen J. C., Abello S., Manchanda R. et al. Reconstruction of dawsonite by alumina carbonation in (NH4)2CO3: Requisites and mechanism // Chemistry of Materials. 2008. Vol. 20, No. 12. P. 3973–3982. 30. Stoica G., Pérez-Ramírez J. Reforming dawsonite by memory effect of AACH-derived aluminas // Chemistry of Materials. 2007. Vol. 19, No. 19. P. 4783–4790. |