ArticleName |
Определение параметров осаждения
при сгущении и промывке красных шламов |
Abstract |
Представлено обоснование необходимости снижения содержания гидроксида натрия в красном шламе перед транспортировкой в шламохранилище, поддержания Ж:Т после каждого агрегата в процессе сгущения и промывки шлама. Основным аппаратом является одноярусный радиальный сгуститель, где выделены зоны флокуляции, свободного осаждения, стесненного осаждения, а также область работы граблин. В работе кратко представлены основные математические формулы для описания зон стесненного и свободного осаждения в сгустителе и уравнения материального баланса для описания противоточно работающих промывателей. На исследуемом предприятии реагент на этапе промывки не добавляют, зона флокуляции в промывателях отсутствует. Первая часть экспериментальных исследований была посвящена процессу сгущения красного шлама с добавлением рабочего раствора флокулянта, используемого на исследуемом предприятии, с учетом условий его приготовления и впрыскивания. Получены кривые осаждения на пробах материала красного шлама с разной концентрацией твердого в питающем потоке. Обосновано применение модифицированного метода Кинча для расчета эмпирических параметров по кривым осаждения. В работе вычислены: скорость Стокса, средний стоксовский диаметр сфлокулированной частицы, критическая концентрация (гелевая точка), индекс стесненного осаждения. Рассчитаны функции плотности потока Кинча при разном содержании твердой фракции в исходном шламе. Вторая часть экспериментальных исследований была посвящена процессу противоточной промывки ранее сфлокулированного шлама. На основании результатов серии периодических опытов осаждения сфлокулированной пульпы при противоточной 3-, 4-, 5-, 6-кратной промывке сделаны выводы о содержании гидроксида натрия на каждом этапе промывки, получены значения эффективности промывки. Представленные результаты будут использованы при разработке математической модели радиального сгустителя на этапе сгущения и промывки. |
References |
1. Zinoveev D., Pasechnik L., Fedotov M. et al. Extraction of valuable elements from red mud with a focus on using liquid media — A Review. Recycling. 2021. Vol. 6, Iss. 38. DOI: 10.3390/recycling6020038 2. Mishra Brajendra, Gostu Sumedh. Materials sustainability for environment: Red-mud treatment. Frontiers of Chemical Science and Engineering. 2017. Vol. 11. DOI: 10.1007/s11705-017-1653-z 3. Piirainen V. Yu., Barinkova A., Starovoytov V. N., Barinkov V. Deactivation of red mud by primary aluminum production wastes. Materials Science Forum. 2021. Vol. 1040. pp. 109–116. DOI: 10.4028/www.scientific.net/MSF.1040.109 4. Alam Md Kh., Zanganeh J., Moghtaderi B. The composition, recycling and utilisation of Bayer red mud. Resources Conservation and Recycling. 2018. Vol. 141. pp. 483–498. DOI: 10.1016/j.resconrec.2018.11.006 5. Pyagay I. N., Kremcheev E. A., Pasechnik L. A., Yatsenko S. P. Carbonization processing of bauxite residue as an alternative rare metal recovery process. Tsvetnye Metally. 2020. No. 10. pp. 56–63. DOI: 10.17580/tsm.2020.10.08 6. Raghubanshi A. S. et al. Recycling and potential utilization of red mud (Bauxite Residue) for construction industry applications. Indian Journal of Engineering and Materials Sciences. 2022. Vol. 29, Iss. 4. pp. 401–410. 7. Archambo M. New horizons for processing and utilizing red mud. Houghton, Michigan : Michigan Technological University, 2021. 213 p. 8. Tanvar Himanshu, Mishra Brajendra. Hydrometallurgical recycling of red mud to produce materials for industrial applications: alkali separation, iron leaching and extraction. Metallurgical and Materials Transactions B. 2021. Vol. 52. pp. 1–15. DOI: 10.1007/s11663-021-02285-5 9. Piirainen V. Yu., Mikhaylov A. V., Barinkova A. A. The concept of modern ecosystem for the Ural Aluminium Smelter. Tsvetnye Metally. 2022. No. 7. pp. 39–45. DOI: 10.17580/tsm.2022.07.04 10. Fawell Ph., Nguyen T., Solnordal C., Stephens D. Enhancing gravity thickener feedwell design and operation for optimal flocculation through the application of computational fluid dynamics. Mineral Processing and Extractive Metallurgy Review. 2021. Vol. 42. pp. 496–510. DOI: 10.1080/08827508.2019.1678156 11. Brichkin V. N., Vasilyev V. V., Nagornaya E. А., Gumenyuk A. M. Bauxite grade improvement through selective grinding. Obogashchenie Rud. 2017. No. 3. pp. 3–9. DOI: 10.17580/or.2017.03.01 12. Alexandrov V. I., Kibirev V. I., Serzhan S. L. The effectiveness of polyurethane coatings on internal surfaces of slurry lines in tailings slurry hydrotransport systems. Obogashchenie Rud. 2020. No. 4. pp. 35–41. DOI: 10.17580/or.2020.04.06 13. Avksentyev S. Yu., Makharatkin P. N., Safiullin R. N., Aleksandrov V. I. Specific pressure loss calculations for tailings hydrotransport at the Kachkanar GOK. Obogashchenie Rud. 2022. No. 3. pp. 45–51. DOI: 10.17580/or.2022.03.08 14. Tian J. L., Zhang Z. Y., Jiang Y. H. The application of intelligent control to red mud settling and washing in an alumina refinery. Minerals, Metals and Materials Series. Springer Science and Business Media Deutschland GmbH, 2021. Vol. 6. pp. 3–9. 15. Li H., Ai-xiang Wu, Hong-Jiang Wang, Hui Chen et al. Changes in underflow solid fraction and yield stress in paste thickeners by circulation. International Journal of Minerals, Metallurgy and Materials. 2021. Vol. 28, No. 3. pp. 349–357. 16. Boikov A. V., Savelev R. V., Payor V. A., Potapov A. V. Evaluation of bulk material behavior control method in technological units using DEM. Part 2. CIS Iron and Steel Review. 2020. No. 2. pp. 3–6. DOI: 10.17580/cisisr.2020.02.01 17. Li L., Iskander M. Use of machine learning for classification of sand particles. Acta Geotechnica. 2022. DOI: 10.1007/s11440-021-01443-y 18. Madarász L., Köte Á., Hambalkó B., Csorba K. et al. In-line particle size measurement based on image analysis in a fully continuous granule manufacturing line for rapid process understanding and development. International Journal of Pharmaceutics. 2022. Vol. 612. DOI: 10.1016/J.IJPHARM.2021.121280 19. Beloglazov I., Petrov P., Bazhin V. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. No. 2. pp. 50–54. DOI: 10.17580/em.2020.02.12 20. Shestakov A. K., Petrov P. A., Nikolaev M. Yu. Automatic system for detecting visible emissions in a potroom of aluminium plant based on technical vision and a neural network. Metallurg. 2022. No. 10. pp. 105–112. DOI: 10.52351/00260827_2022_10_105 21. Precision Light & Air. Available at: https://www.plapl.com.au/ (Accessed: 15.12.2022). 22. Aleksandrova T. N., Potemkin V. A. Development of a methodology to assess the hydrocyclone process with account of the rheological properties of the mineral slurry. Journal of Mining Institute. 2021. Vol. 252. pp. 908–916. DOI: 10.31897/PMI.2021.6.12 23. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. Modern physicochemical equilibrium description in Na2O – Al2O3 – H2O system and its analogues. Journal of Mining Institute. 2019. Vol. 237. pp. 298–306. DOI: 10.31897/pmi.2019.3.298 24. Zhang Hualu, Wang Fuli, Li Kang, Luping Zhao. Stochastic chance-constrained optimization framework for the thickening-dewatering process with an uncertain feed quantity. Chemical Engineering Research and Design. 2021. Vol. 173. DOI: 10.1016/j.cherd.2021.07.013 25. Nemchinova N. V., Tyutrin A. A., Somov V. V. Determining optimum parameters of fluorine leaching from the carbon part of spent pot lining. Journal of Mining Institute. 2019. Vol. 239. p. 544. DOI: 10.31897/pmi. 2019.5.544 26. Liu X., Yin H., Zhao J., Guo Z. et al. Understanding the coagulation mechanism and floc properties induced by Fe(VI) and FeCl3: population balance modeling. Water Science and Technology. IWA Publishing, 2021. Vol. 83, No. 10. pp. 2377–2388. 27. Loginova I. V., Kyrchikov A. V., Penyugalova N. P. Alumina production process : Learner’s guide. Ed. by I. V. Loginova. Yekaterinburg : Izdatelstvo Uralskogo universiteta, 2015. 336 p. 28. Salamatov V. I., Salamatov O. V. Understanding the process kinetics of thickening and washing of low-silicon bauxite residues. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22, No. 4. pp. 191–202. DOI: 10.21285/1814-3520-2018-4-191-202 29. Gandurina L. V. Use of organic flocculants for treatment of natural and industrial wastewater and for sludge treatment. Construction site utility services: An overview. VNIINTPI. Moscow, 2000. Iss. 2. 59 p. 30. Fedorova E. R., Firsov A. Yu. Red mud thickening process simulation. Gornyy informatsionno-analiticheskiy byulleten. 2016. No. 11. pp. 3–28. 31. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. An adaptive approach built on the basis of machine vision used for determining concentrate settling parameters. Journal of Mining Institute. 2022. Vol. 256. pp. 677–685. DOI: 10.31897/PMI.2022.77 32. Salamatov O. V., Salamatov V. I. On the effect of flocculants on the process kinetics of thickening and washing of low-silicon bauxite residues in alumina production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. Vol. 23, No. 2. pp. 404–414. DOI: 10.21285/1814-3520-2019-2-404-414 33. Chernigov D. A., Bogorodskiy A. V., Nabiulin R. N., Mineeva T. S. Understanding the processes of thickening gold ore process slurries. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. Vol. 25, No. 3. pp. 391–401. DOI: 10.21285/1814-3520-2021-3-391-401 34. Laros T., Slottee S., Baczek F. Testing, sizing, and specifying sedimentation equipment. Mineral Processing Plant Design, Practice and Control. 2022. Vol. 1. 2243 p. 35. Kynch G. J. A theory of sedimentation. Transactions of the Faraday Society. 1952. Vol. 48. p. 166. 36. Labiosa A. A. Dynamic simulation of red mud washers used in aluminum industries. School of Civil, Environmental and Chemical Engineering RMIT University VICTORIA. Australia, 2010. 143 p. |