Название |
Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores |
Библиографический список |
1. Shabarov A., Kuranov A., Popov A., Tsirel S. Geodynamic risks of mining in highly stressed rock mass. E3S Web of Conferences: 1st International Scientific Conference. Vladivostok : EDP Sciences, 2019. Vol. 129. DOI: 10.1051/e3sconf/201912901011 2. Kozyrev A. A., Panin V. I., Semenova I. E., Zhuravleva O. G. Geodynamic Safety of Mining Operations under Rockburst-Hazardous Conditions in the Khibiny Apatite Deposits. Journal of Mining Science. 2018. Vol. 54, No. 5. pp. 734–743. 3. Li C. C., Mikula P., Simser B., Hebblewhite B., Joughin W. C. Discussions on rockburst and dynamic ground support in deep mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11(5). pp. 1110–1118. 4. Rasskazov I. Ju., Saksin B. G., Potapchuk M. I., Anikin P. A. The researches of burst-hazard on mines in Russian far east. Geomechanics and Geodynamics of Rock Masses. 2018. Vol. 1. pp. 153–166. 5. Kozyrev A., Konstantinov K. Development of an expressmethod to control damages in underground mining excavations under rockburst hazardous conditions. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. 2017. Vol. 17(13). pp. 253–259. 6. Xiaohong L., Xinfei W., Yong K., Zheng H. Artificial Neural Network for Prediction of Rockburst in Deep-Buried Long Tunnel. International Symposium on Neural Net-works: Advances in Neural Networks. Chongqing : Springer. 2005. Vol. 3498. pp. 983–986. 7. Rasskazov I., Saksin B., Usikov V., Sidlyar A. The assessment of the impact of natural and anthropogenic factors on the current stressstrain state of rock massif of burst-hazardous ore deposits in the East of Russia. E3S Web of Conferences. France : EDP Sciences, 2018. Vol. 56. DOI: 10.1051/e3sconf/20185602011 8. He M., Ren F., Liu D. Rockburst mechanism research and its control. International Journal of Mining Science and Technology. 2018. Vol. 28(5). pp. 829–837. 9. Bashkov V. I., Khristolyubov E. A., Eremenko A. A., Filippov V. N., Konurin A. I. Substantiation of mining system parameters for rock-burst hazardous blind iron ore bodies in Gornaya Shoria. GIAB. 2018. No. 3. pp. 18–31. 10. Eremenko A. A., Konurin A. I., Shtirts V. A., Prib V. V. Identification of higher rock pres-sure zones in rockburst-hazardous iron ore deposits. Gornyi Zhurnal. 2020. No. 1. pp. 78–81. DOI: 10.17580/gzh.2020.01.15 11. Zhou J., Li X., Mitri H.S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. Journal of Computing in Civil Engineering. 2016. Vol. 30(5). DOI: 10.1061/(ASCE)CP.1943-5487.0000553 12. Driad-Lebeau L., Lahaie F., Marwan A., Josien J.P., Bigarre P. Seismic and ge-otechnical investigations following a rockburst in a complex French mining district. International Journal of Coal Geology. 2005. Vol. 64(1). pp. 66–78. 13. Yin-hui Z. The study of acoustic emission (AE) forecasting coal and rock disaster tech-nique. Journal of Coal Science and Engineering. 2009. Vol. 15. pp. 157–160. 14. Yunyun X., Dongqiang X. The Study of Forecasting Model of Rock Burst for Acoustic Emission Based on BP Neural Network and Catastrophe Theory. Advances in Neural Network Research and Applications. 2010. pp. 11–19. DOI: 10.1007/978-3-642-12990-2_2 15. Wei G. Time Serial Model of Rock Burst Based on Evolutionary Neural Network. International Conference on Artificial Intelligence and Computational Intelligence. Sanya : Springer, 2010. pp. 406–413. 16. Meifeng C. Prediction and prevention of rockburst in metal mines – A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering. Vol. 8. 2016. pp. 204–211. 17. Zhou J., Xibing L., Xiuzhi S. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Science. 2012. Vol. 50. pp. 629–644. 18. Shuren W., Chunyang L., Wenfa Y., Zhengshen Z., Wenxue C. Multiple indicators prediction method of rock burst based on microseismic monitoring technology. Arabian Journal of Geosciences. 2017. Vol. 10(6). DOI: 10.1007/s12517-017-2946-8 19. Ermakov N. I. Rock burst causes at ore fields (by the example of the North Urals Bauxite Mine). GIAB. 2001. No. 8. pp. 218–228. 20. Petuhov I. M., Litvin V. A., Kucherski L. V. et al. 20. Rock bursts and ways of controlling them at the mines of the Kizel coal basin. Perm, 1969. 397 p.
21. Lovchikov A. V. Mine-tectonic rock bursts at the Lovozersky rare-metal deposit. Vestnik of MSTU. 2008. Vol. 11, No. 3. pp. 385-392. 22. Kosuhin N. N. Predicting rock burst hazard of a rock mass when mining in the zones of tectonic fault influence: thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. – Saint-Petersburg : NMU Gornyi, 2016. – 22 p. 23. Batugin A. S. To the mechanism of manifestation of fault displacement movement in tectonic rock bursts. Collection of studies. Saint-Petersburg : VNIMI, 1994. pp. 157–160. 24. Filippov V. N. Improving the efficiency of carrying out and supporting developing and face entries in the zones tectonic faults at iron-ore deposits : thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. – Novosibirsk : SB RAS, 2011. – 23 p. 25. Applied statistics reference. Ed. by E. Lloyd, U. Lederman. Moscow : Finansy i stilistika, 1990. 526 p. 26. David W. S. On Optimal and Data-Based Histograms. Biometrika. 1979. Vol. 66, No. 3. pp. 605–610. 27. Freedman D., Diaconis P. On this histogram as a density estimator: L2 theory. Zeitschrift fur wahrscheinlichkeitstheorie und verwandte gebiete. 1981. Vol. 57. pp. 453–476. 28. Ayvazyan S. A, Buhshtaber V. M., Enyukov I. S., Meshalkin L. D. Applied statistics: classification and dimensionality decreasing. Reference book. Moscow : Finansy i stilistika, 1989. 607 p. 29. Rodionov D. A., Kogan R. I., Golubeva V. A., Smirnov B. I. Sirotinskaya S. V. Reference on mathematical methods in geology. Moscow : Nedra, 1978. 335 p. 30. Kiselev V. A., Tsvetkova I. V. Creating zoning maps by means of GIS based on the determination of the multivariable dataset statistical homogeneity. Gornyi Zhurnal. 2008. No. 5. pp. 42–50. |